1900

Integration of a dark fermentation effluent in a microalgal-based biorefinery for the production of high-added value omega-3 fatty acids

Abstract

Dark fermentation is an anaerobic digestion process of biowaste, used to produce hydrogen- for generation of energy- that however releases high amounts of polluting volatile fatty acids, such as acetic acid, in the environment. In order for this biohydrogen production process to become more competitive, the volatile fatty acids stream can be utilized through conversion to high added-value metabolites, such as omega-3 fatty acids. The docosahexaenoic acid is one of the two most known omega-3 fatty acids and has been found to be necessary for a healthy brain and proper cardiovascular function. The main source is currently fish, which obtain the fatty acid from the primary producers, microalgae, through the food chain. Crypthecodinium cohnii, a heterotrophic marine microalga, is known for accumulating high amounts of docosahexaenoic acid, while offering the advantage of assimilating various carbon sources, such as glucose, ethanol, glycerol and acetic acid. The purpose of this work was to examine the ability of a C. cohnii strain to grow on different volatile fatty acids, as well as, on a pretreated dark fermentation effluent and accumulate omega-3. The strain was found to grow well on relatively high concentrations of acetic, butyric or propionic acid as main carbon source in a fed-batch pH-auxostat. Most importantly, C. cohnii totally depleted the organic acid content of an ultra-filtrated dark fermentation effluent after 60 h of fed-batch cultivation, therefore offering a bioprocess not only able to mitigate environmental pollutants, but also to provide a solution for a sustainable energy production process. The accumulated docosahexaenoic acid content was as high as 29.8% (w/w) of total fatty acids.

Related subjects: Production & Supply Chain
Countries: Greece
Loading

Article metrics loading...

/content/41
2019-03-11
2021-06-24
http://instance.metastore.ingenta.com/content/41
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error