Luxembourg
Case Studies towards Green Transition in EU Regions: Smart Specialisation for Transformative Innovation
Oct 2022
Publication
This report analyses five case study reports in-depth across five EU countries as part of a broader analytical and critical exercise. This analytical work seeks to contribute to the development of new models for regional and local authorities aiming to boost support for Green Transition of their economies through smarter innovation policies using the smart specialisation (S3) approach. The work covered five regions from across the European Union representing a diversity of approaches to using S3 for Green Transition: the Basque Country in Spain the Centro region in Portugal the region of East and North Finland the region of Western Macedonia in Greece and the region of West Netherlands. The case studies included in this report consists of three sections on (i) Profile of the region and key development challenges; (ii) Innovation strategies and policies for green transition: incorporating societal challenges; (iii) Understanding and monitoring innovationled green transition. Drawing together the different elements presented the conclusion provides a summary overview of the case and the authors’ opinion on it.
Battery and Hydrogen Energy Storage Control in a Smart Energy Network with Flexible Energy Demand Using Deep Reinforcement Learning
Sep 2023
Publication
Smart energy networks provide an effective means to accommodate high penetrations of variable renewable energy sources like solar and wind which are key for the deep decarbonisation of energy production. However given the variability of the renewables as well as the energy demand it is imperative to develop effective control and energy storage schemes to manage the variable energy generation and achieve desired system economics and environmental goals. In this paper we introduce a hybrid energy storage system composed of battery and hydrogen energy storage to handle the uncertainties related to electricity prices renewable energy production and consumption. We aim to improve renewable energy utilisation and minimise energy costs and carbon emissions while ensuring energy reliability and stability within the network. To achieve this we propose a multi-agent deep deterministic policy gradient approach which is a deep reinforcement learning-based control strategy to optimise the scheduling of the hybrid energy storage system and energy demand in real time. The proposed approach is model-free and does not require explicit knowledge and rigorous mathematical models of the smart energy network environment. Simulation results based on real-world data show that (i) integration and optimised operation of the hybrid energy storage system and energy demand reduce carbon emissions by 78.69% improve cost savings by 23.5% and improve renewable energy utilisation by over 13.2% compared to other baseline models; and (ii) the proposed algorithm outperforms the state-of-the-art self-learning algorithms like the deep-Q network.
Advanced Biofuels in the European Union - Status Report on Technology Development, Trends, Value Chains & Markets
Jan 2024
Publication
The report provides a detailed examination of the biofuel sector and advanced biofuel sector within the European Union (EU) focusing on its economic environmental and technological dimensions. The report is an update of the CETO 2023 report. The EU is highlighted as the central point of view with specific references to EU Member States showcasing their roles in the sector. The report is essential for understanding the multifaceted role of advanced biofuels in the EU's strategy to reduce greenhouse gas emissions and enhance energy security. The report underscores the EU's commitment through various policies and directives such as the Renewable Energy Directive and its amendment which set sustainability criteria and define advanced biofuels. The report details the EU's leadership in scientific publications and high-value patents in the advanced biofuel sector. It gives insights into the current state of innovation and the areas where the EU is leading. The report delves into technological advancements and challenges in the biofuel sector. It discusses various advanced biofuel technologies currently being developed and commercialised. The report covers the trends in installed capacity and production of biofuels within the EU providing a comparative analysis with other regions. It details the production capacities and operational plants for bioethanol and biodiesel. The report provides comprehensive data on the economic contributions of the advanced biofuel sector to the EU's economy. The report details the sector's impact on GDP and employment highlighting the significant contributions from operation and maintenance feedstock supply construction and equipment manufacturing. The report emphasises the importance of continued investment technological development and international collaboration to ensure the advanced biofuel sector's growth and sustainability.
Renewable Fuels of Nob-biological Origin in the European Union - Status Report on Technology Development, Trends, Value Chains & Markets
Jan 2024
Publication
This report investigates the status and trend of Renewable Fuels of Non-Biological Origin (RFNBO) except hydrogen which are needed to cover part of the EU’s demand for low carbon renewable fuels in the coming years. The report is an update of the CETO 2023 report. Most of the conversion technologies investigated have been already demonstrated at small-scale and the current EU legislative framework under the recast of the Renewable Energy Directive (EU) 2018/2001 (Directive EU 2023/2413) sets specific targets for their use. As a pre-requisite well-established solid hydrogen supply chains are needed together with carbon capture technologies to provide carbon dioxide as Carbon Capture and Use (CCU). Fuels that may be produced starting from H2 and CO2 or N2 are hydrocarbons alcohols and ammonia. RFNBO may play a crucial role in the energytransition towards decarbonisation especially in hard-to-abate sectors where direct electrification is not possible. In addition most RFNBO can use existing infrastructure. The growing interest in these fuels is witnessed by the many funding programmes which are today available. Moreover EU leads the sector in terms of patents companies and demonstration activities. Finally the report considers the major challenges and the opportunities for a rapid market uptake of such fuels.
Greening of European Sea Ports - Final Report
Mar 2024
Publication
The report addresses the environmental challenges faced by European sea ports and aims to provide guidance to smaller ports for improving their environmental performance while achieving sustainability goals through experiences gained by implementing noteworthy green initiatives in practice. Larger ports possess significant advantages in terms of financial resources risk tolerance and organisational capacity. They often have the means to invest in innovative solutions and actively participate in research and development projects leading to co-funded pilot implementation of green initiatives. They typically have more skilled personnel stronger influence and stakeholder leverage which position them better to lead the way in sustainability efforts. Finally larger ports often form robust collaborations to drive collective action towards sustainable goals. Smaller ports face unique challenges stemming from typically limited resources and risk aversion. They often prioritise mature solutions relying on tested practices to mitigate potential risks. They may lack internal expertise requiring guidance and capacity-building programmes to navigate the selection and implementation of green practices. Also they require financial and technical support particularly as they may underutilise available funding mechanisms and have limited participation in R&D programmes. They may benefit from partnerships with other ports and stakeholders to create synergies and gain experience from their lessons learned to boost their capacity to implement green practices
Fuel Cell Technology in the European Union - Status Report on Technology Development, Trends, Vlue Chains & Markets
Jan 2024
Publication
This report is an output of the Clean Energy Technology Observatory (CETO). CETO's objective is to provide an evidence-based analysis feeding the policy making process and hence increasing the effectiveness of R&I policies for clean energy technologies and solutions. It monitors EU research and innovation activities on clean energy technologies needed for the delivery of the European Green Deal; and assesses the competitiveness of the EU clean energy sector and its positioning in the global energy market. CETO is being implemented by the Joint Research Centre for DG Research and Innovation in coordination with DG Energy.
Water Electrolysis and Hydrogen in the European Union - Status Report on Technology Development, Trends, Value Chains & Markets
Jan 2024
Publication
This report is an output of the Clean Energy Technology Observatory (CETO) and is an update of the “Water electrolysis and hydrogen in the European Union” 2023 CETO report. CETO’s objective is to provide an evidencebased analysis feeding the policy making process and hence increasing the effectiveness of R&I policies for clean energy technologies and solutions. It monitors EU research and innovation activities on clean energy technologies needed for the delivery of the European Green Deal; and assesses the competitiveness of the EU clean energy sector and its positioning in the global energy market. CETO is being implemented by the Joint Research Centre for DG Research and Innovation Energy in coordination with DG Energy.
Delivering the EU Green Deal: Progress Towards Targets 2025
Jan 2025
Publication
This report provides a comprehensive assessment of progress towards the European Green Deal (EGD) the European Union’s transformative agenda for achieving climate neutrality by 2050. The analysis encompasses 154 quantifiable targets from 44 policy documents between 2019 and 2024 across key sectors such as climate energy circular economy transport agriculture and food ecosystems and biodiversity water soil and air pollution. The study shows that significant achievement has been delivered so far but progress needs to accelerate in many areas. As of mid-2024 32 of the 154 targets are currently “on track” and 64 are identified as “acceleration needed” meaning that more progress is needed to meet the targets on time. Furthermore 15 of the targets are found to be “not progressing” or “regressing” and for 43 of the targets no data is currently available. The timing of the binding policies most of which have been recently agreed and are expected to deliver results in the coming years is a significant factor influencing these assessments. This report integrates all EGD actions and related policies offering an assessment of the EU’s green transition based on robust data and science. It identifies priority areas for intensified efforts to meet short-term implementation goals and contribute to the long-term ambition of a sustainable fair just and climate-neutral Europe by 2050. This collective work serves as a benchmarking tool providing scientifically grounded guidance for future EU policies and programmes.
Sustainable Supply Chain and Industrialisation of Hydrogen Technologies, Summary Report 2024
Jan 2024
Publication
This report delves into the European renewable hydrogen supply chain to offer recommendations for Europe to become a leader in the hydrogen economy.
Overall Strategic Analysis of Clean Energy Technology in the European Union
Jan 2025
Publication
This report by the Clean Energy Technology Observatory (CETO) provides an updated strategic analysis of the EU clean energy technology sector. The EU's renewable share in gross final energy consumption rose to 24.5% in 2023 and to 44.7% of gross electricity consumption. The electrification rate however has remained almost unchanged at 26% over the decade to 2023 indicating slow progress on decarbonisation of transport and heating sectors. The EU renewable energy industry saw growth in turnover and gross value added in 2023 outperforming the overall economy. However the production value of clean energy technologies declined in some areas such as bioenergy PV and hydrogen electrolyser production. EU public investment in energy research and innovation has increased but it remains lower as a share of GDP compared to other major economies. Employment in the renewable energy sector reached 1.7 million in 2022 growing at a faster rate than the economy as a whole. The clean energy sector however faces challenges in manufacturing. A new sustainability assessment framework has been applied for clean energy technologies highlighting the need for a harmonized basis for comparing results. The report also underscores the general need to improve data quality and timeliness to better inform policy makers and investors.
Hydrogen Production via Direct Seawater Electrolyisis, Literature Review
Jan 2025
Publication
Seawater electrolysis is a promising approach for sustainable hydrogen production that could alleviate the ever-growing demand for freshwater resources. This literature review synthesizes current research on direct seawater electrolysis drawing attention to advances in electrode materials catalyst efficiency and system design. Furthermore an overview of indirect seawater electrolysis is given as a benchmark. Key challenges including electrode corrosion chlorine evolution and energy efficiency are critically analysed. Recent innovations in selective catalysts and membrane technologies are discussed as potential solutions for such challenges. The review also evaluates the economic feasibility of direct seawater electrolysis compared with the established traditional electrolysis using desalinated water. There is currently no research or industrial project demonstrating clear benefits of using direct seawater electrolysis over indirect seawater electrolysis. Our findings however do suggest that direct seawater electrolysis can become a viable component of the hydrogen economy for specific target applications.
Techno-Economic Analysis on Implementing Hydrogen in a Combined Heat and Power Plant in Luxembourg to Reduce Carbon Emissions
Apr 2025
Publication
In 2021 the global electricity and heat sector recorded the highest increase in carbon dioxide (CO2) emissions in comparison with the previous year highlighting the ongoing challenges in reducing emissions within the sector. Therefore combined heat and power (CHP) plants running on renewable fuels can play an important role in the energy transition by decarbonising a process increasing the efficiency and capacity factor. Since 2003 Luxembourgish CHP plants have been transitioning from natural gas to biomass mainly wood pellets. However even though wood pellets are a renewable alternative the market volatility in 2022 highlighted the vulnerability of a system reliant solely on one type of fuel. This study assesses the feasibility of using hydrogen to decarbonise a cogeneration plant powered by a natural gas-fuelled internal combustion engine. Although the technology to use hydrogen as a fuel for such systems already exists a technical and economic analysis of implementing a hydrogen-ready plant is still lacking. Our results show that from a technical perspective retrofitting an existing power plant to operate with hydrogen is feasible either by adapting or replacing the engine to accommodate hydrogen blends from 0 up to 100%. The costs of making the CHP plant hydrogen-ready vary depending on the scenario ranging from a 20% increase for retrofitting to a 60% increase for engine replacement in the best-case scenarios. However these values remain highly variable due to uncertainties associated with the ongoing technology development. From an economic standpoint as of 2024 running the plant on hydrogen remains more expensive due to significant initial investments and higher fuel costs. Nevertheless projections indicate that rising climate concerns CO2 taxes geopolitical factors and the development of the hydrogen framework in the region—through projects such as MosaHYc and HY4Link— could accelerate the competitiveness of hydrogen making it a more viable alternative to fossil-based solutions in the near future.
No more items...