1900

Enhancing the Corrosion Resistance of Austenitic Steel Using Active Screen Plasma Nitriding and Nitrocarburising

Abstract

AISI 316L steel was subjected to active screen plasma nitriding and nitrocarburising. The processes were carried out at 440 °C for 6 h. The nitriding process employed an atmosphere of nitrogen and hydrogen, while nitrocarburising was carried out in nitrogen, hydrogen and methane. The processes yielded structures consisting of nitrogen and nitro-carbon expanded austenite, respectively. Microhardness was measured via the Vickers method, surface roughness using an optical profilometer, microstructure by means of light microscopy, while a scanning electron microscope (SEM) served to determine surface topography. Phase composition, lattice parameter and lattice deformation tests were carried out using the X-ray diffraction (XRD) method. Corrosion resistance measurements were performed in a 0.5 M NaCl solution using the potentiodynamic method. The produced layers showed very high resistance to pitting corrosion, while the pitting potential reached 1.5 V, a value that has not yet been recorded in a chloride environment. After the passive layer was broken down, there was a clear deceleration of pitting in the nitrocarburised layer. It was found that in the case of nitro-carbon expanded austenite, pits are formed much slower compared to the nitrogen austenite layer.

Funding source: "National Science Centre, grant number 2012/07/D/ST8/02599."
Countries: Poland
Loading

Article metrics loading...

/content/journal2210
2021-06-15
2021-10-21
http://instance.metastore.ingenta.com/content/journal2210
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error