Brazil
Evaluation of Technological Alternatives for the Energy Transition of Coal-Fired Power Plants, with a Multi-Criteria Approach
Aug 2025
Publication
This paper investigates technological pathways for the conversion of coal-fired power plants toward sustainable energy sources using an integrated multi-criteria decisionmaking approach that combines Proknow-C AHP and PROMETHEE. Eight alternatives were identified: full conversion to natural gas full conversion to biomass coal and natural gas hybridization coal and biomass hybridization electricity and hydrogen cogeneration coal and solar energy hybridization post-combustion carbon capture systems and decommissioning with subsequent reuse. The analysis combined bibliographic data (26 scientific articles and 13 patents) with surveys from 14 energy experts using Total Decision version 1.2.1041.0 and Visual PROMETHEE version 1.1.0.0 software tools. Based on six criteria (environmental structural technical technological economic and social) the most viable option was full conversion to natural gas (ϕ = +0.0368) followed by coal and natural gas hybridization (ϕ = +0.0257) and coal and solar hybridization (ϕ = +0.0124). These alternatives emerged as the most balanced in terms of emissions reduction infrastructure reuse and cost efficiency. In contrast decommissioning (ϕ = −0.0578) and carbon capture systems (ϕ = −0.0196) were less favorable. This study proposes a structured framework for strategic energy planning that supports a just energy transition and contributes to the United Nations Sustainable Development Goals (SDGs) 7 and 13 highlighting the need for public policies that enhance the competitiveness and scalability of sustainable alternatives.
Combustion and Specific Fuel Consumption Evaluation of a Single-cylinder Engine Fueled with Ethanol, Gasoline, and a Hydrogen-rich Mixture
Mar 2024
Publication
This study evaluates the effects of adding a hydrogen gaseous mixture (HGM) to primary fuel in a single cylinder research engine (SCRE). Storage and transportation of high-purity hydrogen limit the application of this gas. With the development of fuel reforming methods using hydrogenenriched mixtures in spark-ignited internal combustion engines is a convenient option to fossil fuels. Ethanol and gasoline were used as primary fuel by direct injection (DI) and gaseous mixture was added by fumigation system (FS). The experimental analysis was developed in Spark Ignition (SI) four-stroke engine 4 valves and 0.45 L of cubic capacity. For each operation condition and primary fuel spark timing and amount of HGM were adjusted in order to keep air-fuel ratio stochiometric (λ = 100). However the spark timing and the percentage of gas varied aiming to evaluate the behavior of the air-fuel mixture. It was evaluated the specific fuel consumption and the evolution of the combustion process. The results showed that the addition of reformed gas promotes acceleration of the combustion process ethanol and gasoline. Results were expressive when using ethanol. A reduction in fuel-specific consumption - for this fuel - with combustion centralized which did not occur when gasoline was employed.
Detonation Processes Application to Increase Thermal Efficiency in Gas Turbine Cycles: Case Study for Hydrogen Enriched Fuels
Dec 2024
Publication
This work describes a thermodynamic comparison of the thermal efficiency of gas turbine engines featuring a conventional combustion chamber and a detonation combustion chamber using methane ethanol and mixtures of both ethanol and hydrogen and methane and hydrogen as fuels. The composition of gases was determined by the minimization of the Gibbs free energy whereas temperature pressure and velocity of detonation waves were determined by the Chapman-Jouguet theory. The results obtained here show that the DCC gas turbine cycle has a higher net work output and thermal efficiency than the CCC gas turbine cycle for all fuels studied in this work. The maximum thermal efficiency obtained with the DCC gas turbine cycle is indeed 57.22% which represents a 53.75% improvement over the maximum thermal efficiency obtained with the CCC gas turbine cycle (which has a peak thermal efficiency of 37.22%) under the same pressure ratio and turbine inlet temperature.
Hydrogen in Burners: Economic and Environmental Implications
Nov 2024
Publication
For centuries fossil fuels have been the primary energy source but their unchecked use has led to significant environmental and economic challenges that now shape the global energy landscape. The combustion of these fuels releases greenhouse gases which are critical contributors to the acceleration of climate change resulting in severe consequences for both the environment and human health. Therefore this article examines the potential of hydrogen as a sustainable alternative energy source capable of mitigating these climate impacts. It explores the properties of hydrogen with particular emphasis on its application in industrial burners and furnaces underscoring its clean combustion and high energy density in comparison to fossil fuels and also examines hydrogen production through thermochemical and electrochemical methods covering green gray blue and turquoise pathways. It discusses storage and transportation challenges highlighting methods like compression liquefaction chemical carriers (e.g. ammonia) and transport via pipelines and vehicles. Hydrogen combustion mechanisms and optimized burner and furnace designs are explored along with the environmental benefits of lower emissions contrasted with economic concerns like production and infrastructure costs. Additionally industrial and energy applications safety concerns and the challenges of large-scale adoption are addressed presenting hydrogen as a promising yet complex alternative to fossil fuels.
Hydrogen Balloon Transportation: A Cheap and Efficiency Mode to Transport Hydrogen
Nov 2023
Publication
The chances of a global hydrogen economy becoming a reality have increased significantly since the COVID pandemic and the war in Ukraine and for net zero carbon emissions. However intercontinental hydrogen transport is still a major issue. This study suggests transporting hydrogen as a gas at atmospheric pressure in balloons using the natural flow of wind to carry the balloon to its destination. We investigate the average wind speeds atmospheric pressure and temperature at different altitudes for this purpose. The ideal altitudes to transport hydrogen with balloons are 10 km or lower and hydrogen pressures in the balloon vary from 0.25 to 1 bar. Transporting hydrogen from North America to Europe at a maximum 4 km altitude would take around 4.8 days on average. Hydrogen balloon transportation cost is estimated at 0.08 USD/kg of hydrogen which is around 12 times smaller than the cost of transporting liquified hydrogen from the USA to Europe. Due to its reduced energy consumption and capital cost in some locations hydrogen balloon transportation might be a viable option for shipping hydrogen compared to liquefied hydrogen and other transport technologies.
Life Cycle Assessment and Exergoenvironmental Analysis of a Double-Effect Vapor Absorption Chiller Using Green Hydrogen, Natural Gas, and Biomethane
Dec 2024
Publication
This study conducts a life cycle assessment and exergoenvironmental evaluation of a double-effect vapor absorption chiller (DEAC) with a cooling capacity of 352 kW employing three different energy sources: natural gas biomethane and green hydrogen. The main objectives of this paper are as follows: (i) provide an exergoenvironmental model for DEAC technologies (ii) evaluation of a case-study where a DEAC is used to cover the cooling demand of a specific university building in the Northeast of Brazil and (iii) evaluate the scenario where the DEAC is fed by green hydrogen (GH2) and compare it with conventional energy resources (natural gas and biomethane). In order to develop the exergoenvironmental model two methodologies are essential: a thermodynamic analysis and a Life Cycle Assessment (LCA). The thermodynamic analysis was carried out using the Engineering Equation Solver (EES: 10.998) software. The LCA has been developed through the open-source software openLCA version 1.10.3 with the Ecoinvent 3.7.1 life cycle inventory database whereas the chosen life cycle inventory assessment (LCIA) method was the ReCiPe Endpoint LCA method (Humanitarian medium weighting–H A). The main results indicate that green hydrogen provides a 99.84% reduction in environmental impacts compared to natural gas during the operational phase while biomethane reduces these impacts by 54.21% relative to natural gas. In the context of life cycle assessment (LCA) green hydrogen decreases fossil resource depletion by 18% and climate change-related emissions by 33.16% compared to natural gas. This study contributes to enhancing the understanding of the environmental and exergoenvironmental impacts of a double-effect vapor absorption chiller by varying the fuel usage during the operational phase.
Use of Depleted Oil and Gas Reservoirs as Bioreactors to Produce Hydrogen and Capture Carbon Dioxide
Aug 2025
Publication
The biological production of hydrogen offers a renewable and potentially sustainable alternative for clean energy generation. In Northeast Brazil depleted oil reservoirs (DORs) present a unique opportunity to integrate biotechnology with existing fossil fuel infrastructure. These subsurface formations rich in residual hydrocarbons (RH) and native H2 producing microbiota can be repurposed as bioreactors for hydrogen production. This process often referred to as “Gold Hydrogen” involves the in situ microbial conversion of RH into H2 typically via dark fermentation and is distinct from green blue or grey hydrogen due to its reliance on indigenous subsurface biota and RH. Strategies include nutrient modulation and chemical additives to stimulate native hydrogenogenic genera (Clostridium Petrotoga Thermotoga) or the injection of improved inocula. While this approach has potential environmental benefits such as integrated CO2 sequestration and minimized surface disturbance it also presents risks namely the production of CO2 and H2S and fracturing which require strict monitoring and mitigation. Although infrastructure reuse reduces capital expenditures achieving economic viability depends on overcoming significant technical operational and biotechnological challenges. If widely applied this model could help decarbonize the energy sector repurpose legacy infrastructure and support the global transition toward low-carbon technologies.
Evaluating the Economic Influence of Water Sources on Green Hydrogen Production: A Cost Analysis Approach
Sep 2024
Publication
The production of green hydrogen requires significant water usage making the economic evaluation of different water sources crucial for optimizing the Levelized Cost of Hydrogen (LCOH). This study examines the economic impact of using seawater groundwater grid water industrial wastewater and rainwater for hydrogen production through PEM electrolysis considering the water abstraction transport treatment and storage costs across various plant sizes (1 MW 10 MW 20 MW 50 MW and 100 MW) were assessed and a sensitivity analysis on electricity prices was conducted. Findings reveal that while water-related costs are minimal.
A Systematic Study on Techno-Economic Evaluation of Hydrogen Production
Sep 2023
Publication
This paper aims to perform a systematic review with a bibliometric approach of the technoeconomic evaluation studies of hydrogen production. To achieve this objective a comprehensive outline of hydrogen production processes from fossil and renewable sources is presented. The results reveal that electrolysis classified as water splitting is the most investigated process in the literature since it contributes to a reduction in greenhouse gas emissions and presents other advantages such as maturity and applicability energy efficiency flexibility and energy storage potential. In addition the processes of gasification classified as thermochemical and steam reforming classified as catalytic reforming are worth mentioning. Regarding the biological category there is a balance between research on photo fermentation and dark fermentation. The literature on the techno-economic evaluation of hydrogen production highlights significant gaps including a scarcity of comprehensive studies a lack of emphasis on commercial viability an absence of sensitivity analysis and the need for comparative analyses between production technologies.
An Updated Review of Recent Applications and Perspectives of Hydrogen Production from Biomass by Fermentation: A Comprehensive Analysis
Mar 2024
Publication
Dayana Nascimento Dari,
Isabelly Silveira Freitas,
Francisco Izaias da Silva Aires,
Rafael Leandro Fernandes Melo,
Kaiany Moreira dos Santos,
Patrick da Silva Sousa,
Paulo Gonçalves de Sousa Junior,
Antônio Luthierre Gama Cavalcante,
Francisco Simão Neto,
Jessica Lopes da Silva,
Érico Carlos de Castro,
Valdilane Santos Alexandre,
Ana M. da S. Lima,
Juliana de França Serpa,
Maria C. M. de Souza and
José C. S. dos Santos
Fermentation is an oxygen-free biological process that produces hydrogen a clean renewable energy source with the potential to power a low-carbon economy. Bibliometric analysis is crucial in academic research to evaluate scientific production identify trends and contributors and map the development of a field providing valuable information to guide researchers and promote scientific innovation. This review provides an advanced bibliometric analysis and a future perspective on fermentation for hydrogen production. By searching WoS we evaluated and refined 62087 articles to 4493 articles. This allowed us to identify the most important journals countries institutions and authors in the field. In addition the ten most cited articles and the dominant research areas were identified. A keyword analysis revealed five research clusters that illustrate where research is progressing. The outlook indicates that a deeper understanding of microbiology and support from energy policy will drive the development of hydrogen from fermentation.
Design Considerations and Preliminary Hydrodynamic Analysis of an Offshore Decentralised Floating Wind-hydrogen System
Sep 2024
Publication
Despite the number of works on the techno-economics of offshore green hydrogen production there is a lack of research on the design of floating platforms to concomitantly support hydrogen production facilities and wind power generation equipment. Indeed previous studies on offshore decentralised configuration for hydrogen production implicitly assume that a floating platform designed for wind power generation (FOWT) can be also suitable as a floating wind hydrogen system (FWHS). This work proposes a novel design for an offshore decentralised FWHS and analyses the effects of the integration of the hydrogen facilities on the platform’s dynamics and how this in turn affects the performances of the wind turbine and the hydrogen equipment. Our findings indicate that despite the reduction in platform’s stability the performance of the wind turbine is barely affected. Regarding the hydrogen system our results aim at contributing to further assessment and design of this equipment for offshore conditions.
Geotechnical Properties of Carbonate Sands on the Coast of Ceará: Implications for Offshore Wind Foundations and Green Hydrogen Initiatives
May 2025
Publication
The coastal region of Ceará Brazil is expected to host offshore wind farms aimed at producing green hydrogen (GH2) through electrolysis. However the viability and cost of these developments may be affected by the mechanical behaviour of the marine subsoil which is largely composed of carbonate sands. These sediments are known for their complex and variable geotechnical properties which can influence the foundation performance. This study investigates the geotechnical characteristics of carbonate sands in comparison with quartz sands to support the design of offshore wind turbine foundations. Field testing using the Ménard pressuremeter and laboratory analyses including particle size distribution microscopy X-ray fluorescence calcimetry direct shear and triaxial testing were performed to determine the key strength and stiffness parameters. The results show substantial differences between carbonate and quartz sands particularly in terms of the stiffness and friction angle with notable variability even within the same material type. These findings highlight the need for site-specific characterisation in offshore foundation design. This study contributes data that can improve geotechnical risk assessments and assist in selecting appropriate foundation solutions under local conditions supporting the planned offshore wind energy infrastructure essential to Ceará’s green hydrogen strategy.
A Review of the Life Cycle Assessment of the Carbon–Water–Energy Nexus of Hydrogen Production Pathways
May 2025
Publication
The hydrogen (H2) economy is seen as a crucial pathway for decarbonizing the energy system with green H2—i.e. obtained from water electrolysis supplied by renewable energy—playing a key role as an energy carrier in this transition. The growing interest in H2 comes from its versatility which means that H2 can serve as a raw material or energy source and various technologies allow it to be produced from a wide range of resources. Environmental impacts of H2 production have primarily focused on greenhouse gas (GHG) emissions despite other environmental aspects being equally relevant in the context of a sustainable energy transition. In this context Life Cycle Assessment (LCA) studies of H2 supply chains have become more common. This paper aims to compile and analyze discrepancies and convergences among recent reported values from 42 scientific studies related to different H2 production pathways. Technologies related to H2 transportation storage and use were not investigated in this study. Three environmental indicators were considered: Global Warming Potential (GWP) Energy Performance (EP) and Water Consumption (WF) from an LCA perspective. The review showed that H2 based on wind photovoltaic and biomass energy sources are a promising option since it provides lower GWP and higher EP compared to conventional fossil H2 pathways. However WF can be higher for H2 derived from biomass. LCA boundaries and methodological choices have a great influence on the environmental indicators assessed in this paper which leads to great variability in WF results as well as GWP variation due credits given to avoid GHG emissions in upstream process. In the case of EI the inclusion of energy embodied in renewable energy systems demonstrates great influence of upstream phase for electrolytic H2 based on wind and photovoltaic electricity.
Hydrogen Storage with Gravel and Pipes in Lakes and Reservoirs
Sep 2024
Publication
Climate change is projected to have substantial economic social and environmental impacts worldwide. Currently the leading solutions for hydrogen storage are in salt caverns and depleted natural gas reservoirs. However the required geological formations are limited to certain regions. To increase alternatives for hydrogen storage this paper proposes storing hydrogen in pipes filled with gravel in lakes hydropower and pumped hydro storage reservoirs. Hydrogen is insoluble in water non-toxic and does not threaten aquatic life. Results show the levelized cost of hydrogen storage to be 0.17 USD kg−1 at 200 m depth which is competitive with other large scale hydrogen storage options. Storing hydrogen in lakes hydropower and pumped hydro storage reservoirs increases the alternatives for storing hydrogen and might support the development of a hydrogen economy in the future. The global potential for hydrogen storage in reservoirs and lakes is 3 and 12 PWh respectively. Hydrogen storage in lakes and reservoirs can support the development of a hydrogen economy in the future by providing abundant and cheap hydrogen storage.
Autothermal Reforming of Methane: A Thermodynamic Study on the Use of Air and Pure Oxygen as Oxidizing Agents in Isothermal and Adiabatic Systems
Oct 2023
Publication
In this paper we analyze the autothermal reforming (ATR) of methane through Gibbs energy minimization and entropy maximization methods to analyze isothermic and adiabatic systems respectively. The software GAMS® 23.9 and the CONOPT3 solver were used to conduct the simulations and thermodynamic analyses in order to determine the equilibrium compositions and equilibrium temperatures of this system. Simulations were performed covering different pressures in the range of 1 to 10 atm temperatures between 873 and 1073 K steam/methane ratio was varied in the range of 1.0/1.0 and 2.0/1.0 and oxygen/methane ratios in the feed stream in the range of 0.5/1.0 to 2.0/1.0. The effect of using pure oxygen or air as oxidizer agent to perform the reaction was also studied. The simulations were carried out in order to maintain the same molar proportions of oxygen as in the simulated cases considering pure oxygen in the reactor feed. The results showed that the formation of hydrogen and synthesis gas increased with temperature average composition of 71.9% and 56.0% using air and O2 respectively. These results are observed at low molar oxygen ratios (O2/CH4 = 0.5) in the feed. Higher pressures reduced the production of hydrogen and synthesis gas produced during ATR of methane. In general reductions on the order of 19.7% using O2 and 14.0% using air were observed. It was also verified that the process has autothermicity in all conditions tested and the use of air in relation to pure oxygen favored the compounds of interest mainly in conditions of higher pressure (10 atm). The mean reductions with increasing temperature in the percentage increase of H2 and syngas using air under 1.5 and 10 atm at the different O2/CH4 ratios were 5.3% 13.8% and 16.5% respectively. In the same order these values with the increase of oxygen were 3.6% 6.4% and 9.1%. The better conditions for the reaction include high temperatures low pressures and low O2/CH4 ratios a region in which there is no swelling in terms of the oxygen source used. In addition with the introduction of air the final temperature of the system was reduced by 5% which can help to reduce the negative impacts of high temperatures in reactors during ATR reactions.
Technical–Economic Analysis of Renewable Hydrogen Production from Solar Photovoltaic and Hydro Synergy in a Pilot Plant in Brazil
Sep 2024
Publication
Renewable hydrogen obtained from renewable energy sources especially when produced through water electrolysis is gaining attention as a promising energy vector to deal with the challenges of climate change and the intermittent nature of renewable energy sources. In this context this work analyzes a pilot plant that uses this technology installed in the Itumbiara Hydropower Plant located between the states of Goiás and Minas Gerais Brazil from technical and economic perspectives. The plant utilizes an alkaline electrolyzer synergistically powered by solar photovoltaic and hydro sources. Cost data for 2019 when the equipment was purchased and 2020–2023 when the plant began continuous operation are considered. The economic analysis includes annualized capital maintenance and variable costs which determines the levelized cost of hydrogen (LCOH). The results obtained for the pilot plant’s LCOH were USD 13.00 per kilogram of H2 with an efficiency loss of 2.65% for the two-year period. Sensitivity analysis identified the capacity factor (CF) as the main determinant of the LCOH. Even though the analysis specifically applies to the Itumbiara Hydropower Plant the CF can be extrapolated to larger plants as it directly influences hydrogen production regardless of plant size or capacity
Proposal for an Energy Efficiency Index for Green Hydrogen Production—An Integrated Approach
Jun 2025
Publication
In the context of mounting concerns over carbon emissions and the need to accelerate the energy transition green hydrogen has emerged as a strategic solution for decarbonizing hard-to-abate sectors. This paper introduces a methodological innovation by proposing the Green Hydrogen Efficiency Index (GHEI) a unified and quantitative framework that integrates multiple stages of the hydrogen value chain into a single comparative metric. The index encompasses six core criteria: electricity source water treatment electrolysis efficiency compression end-use conversion and associated greenhouse gas emissions. Each are normalized and weighted to reflect different performance priorities. Two weighting profiles are adopted: a first profile which assigns equal importance to all criteria referred to as the balanced profile and a second profile derived using the analytic hierarchy process (AHP) based on structured expert judgment named the AHP profile. The methodology was developed through a systematic literature review and was applied to four representative case studies sourced from the academic literature covering diverse configurations and geographies. The results demonstrate the GHEI’s capacity to distinguish the energy performance of different green hydrogen routes and support strategic decisions related to technology selection site planning and logistics optimization. The results highlight the potential of the index to contribute to more sustainable hydrogen value chains and advance decarbonization goals by identifying pathways that minimize energy losses and maximize system efficiency
Pathways for Hydrogen Adoption in the Brazilian Trucking Industry: A Low-Carbon Alternative to Fossil Fuels
Oct 2025
Publication
The growing demand for sustainable solutions in the transportation sector and global decarbonization goals have fueled debate on using hydrogen as an energy source. Although hydrogen’s potential is recognized in Brazil its application in heavy-duty vehicles still faces structural and technological barriers. This study aimed to analyze the viability of hydrogen as an energy alternative for trucks in Brazil. The research adopted an exploratory qualitative approach based on the expert analysis method through semi-structured interviews with development engineers representatives of heavy-duty vehicle manufacturers and researchers specializing in hydrogen technologies. The data were organized into a thematic framework and interpreted using content analysis. The results show that although there is growing interest and ongoing initiatives challenges such as the cost of fuel cells the lack of refueling infrastructure and low technological maturity hinder large-scale adoption. From a theoretical perspective the study contributes by integrating specialized literature with practical insights from key industry players broadening the understanding of the energy transition. In practical terms it outlines some strategic paths such as expanding technological development and forming partnerships. From a social perspective it emphasizes the importance of hydrogen as a pillar for sustainable low-carbon mobility capable of positively impacting public health and mitigating climate change.
e-REFORMER for Sustainable Hydrogen Production: Enhancing Efficiency in the Steam Methane Reforming Process
Aug 2025
Publication
Electrifying heat supply in chemical processes offers a strategic pathway to reduce CO2 emissions associated with fossil fuel combustion. This study investigates the retrofit of an existing terrace-wall Steam Methane Reformer (SMR) in an ammonia plant by replacing fuel-fired burners with electric resistance heaters in the radiant section. The proposed e-REFORMER concept is applied to a real-world case producing hydrogen-rich syngas at 29000 Nm3 /h with simulation and energy analysis performed using Aspen HYSYS®. The results show that electric heating reduces total thermal input by 3.78 % lowers direct flue gas CO2 emissions by 91.56 % and improves furnace thermal efficiency from 85.6 % to 88.9 % (+3.3 %). The existing furnace design and convection heat recovery system are largely preserved maintaining process integration and plant operability. While the case study reflects a medium-scale plant the methodology applies to larger facilities and supports integration with decarbonised power grids and Carbon Capture Utilisation and Storage (CCUS) technologies. This work advances current literature by addressing full-system integration of electrification within hydrogen and ammonia production chains offering a viable pathway to improve energy efficiency and reduce industrial emissions.
Response Surface Analysis of the Energy Performance and Emissions of a Dual-Fuel Engine Generator Using Biodiesel and Hydrogen-Enriched Biogas
Oct 2025
Publication
In this study we investigate the dual-fuel operation of compression ignition engines using biodiesel at varying concentrations in combination with biogas with and without hydrogen enrichment. A response surface methodology based on a central composite experimental design was employed to optimize energy efficiency and minimize pollutant emissions. The partial substitution of diesel with gaseous fuel substantially reduces the specific fuel consumption achieving a maximum decrease of 21% compared with conventional diesel operation. Enriching biogas with hydrogen accounting for 13.3% of the total flow rate increases the thermal efficiency by 0.8% compensating for the low calorific value and reduced volumetric efficiency of biogas. Variations in biodiesel concentration exhibits a nonlinear effect yielding an additional average efficiency gain of 0.4%. Regarding emissions the addition of hydrogen to biogas contributes to an average reduction of 5% in carbon monoxide emissions compared to the standard dual-fuel operation. However dual-fuel operation leads to higher unburned hydrocarbon emissions relative to neat diesel; hydrogen enrichment mitigates this drawback by reducing hydrocarbon emissions by 4.1%. Although NOx emissions increase by an average of 26.6% with hydrogen addition dual-fuel strategies achieve NOx reductions of 11.5% (hydrogen-enriched mode) and 33.3% (pure biogas mode) relative to diesel-only operation. Furthermore the application of response surface methodology is robust and reliable with experimental validation showing errors of 0.55–8.66% and an overall uncertainty of 4.84%.
No more items...