Publications
A European Review of the Potential Role of Industrial Clusters in the Energy System When Leveraging Energy Synergies
Nov 2025
Publication
Concerns about the competitiveness of European industry led to the publication of the Draghi report. One of his recommendations is to install regional green industrial clusters around energy-intensive companies. The report identifies three benefit categories each corresponding to typical industrial symbiosis cases: improved investment cases by shared local low-carbon energy generation improved investment cases by shared infrastructure and improved energy flows for increased resource efficiency. Industrial clusters hold untapped potential to advance the energy transition and climate neutrality. However it is still unknown how and if this potential will ever be reached nor how scalable and replicable the benefits will be. This review paper aims to take a first step in exploring the potential role of industrial clusters in the energy system by exposing the research state of the art in academic literature. A literature review is performed in line with the three benefit categories according to Draghi to understand the enablers and barriers of potential synergies and their impact on the energy system. Afterwards the scalability is assessed by positioning the European industrial clusters in the larger renewable energy landscape. To illustrate the global interest a brief reflection is made on references to industrial clusters in the policy of non-European regions. The work concludes with interesting leads for future research to further advance knowledge on the importance of industrial clusters in the energy system and to stimulate the implementation of energy synergies.
Evaluating Greenhouse Gas Reduction Efficiency Through Hydrogen Ecosystem Implementation from a Life-Cycle Perspective
Nov 2025
Publication
With growing global demand for sustainable decarbonization hydrogen energy systems have emerged as a key pillar in achieving carbon neutrality. This study assesses the greenhouse gas (GHG) reduction efficiency of Republic of Korea’s hydrogen ecosystem from a life-cycle perspective focusing on production and utilization stages. Using empirical data—including the national hydrogen supply structure fuel cell electric vehicle (FCEV) deployment and hydrogen power generation records the analysis compares hydrogenbased systems with conventional fossil fuel systems. Results show that current hydrogen production methods mainly by-product and reforming-based hydrogen emit an average of 6.31 kg CO2-eq per kg H2 providing modest GHG benefits over low-carbon fossil fuels but enabling up to a 77% reduction when replacing high-emission sources like anthracite. In the utilization phase grey hydrogen-fueled stationary fuel cells emit more GHGs than the national grid. By contrast FCEVs demonstrate a 58.2% GHG reduction compared to internal combustion vehicles with regional variability. Importantly this study omits the distribution phase (storage and transport) due to data heterogeneity and a lack of reliable datasets which limits the comprehensiveness of the LCA. Future research should incorporate sensitivity or scenario-based analyses such as comparisons between pipeline transport and liquefied hydrogen transport to better capture distribution-phase impacts. The study concludes that the environmental benefit of hydrogen systems is highly dependent on production pathways end-use sectors and regional conditions. Strategic deployment of green hydrogen regional optimization and the explicit integration of distribution and storage in future assessments are essential to enhancing hydrogen’s contribution to national carbon neutrality goals.
A Review on Combustion Instability of Hydrogen-Enriched Marine Gas Turbines
Nov 2025
Publication
Hydrogen is widely regarded as a promising carbon-free alternative fuel. However the development of low-emission marine gas turbine combustion systems has been hindered by the associated risks of combustion instability also termed as thermoacoustic oscillations. Although there is sufficient literature on hydrogen fuel and combustion instability systematic reviews addressing the manifestations and mechanisms of these instabilities remain limited. The present study aims to provide a comprehensive review of combustion instabilities in hydrogen-enriched marine gas turbines with a particular focus on elucidating the characteristics and underlying mechanisms. The review begins with a concise overview of recent progress in understanding the fundamental combustion properties of hydrogen and then details various instability phenomena in hydrogen-enriched methane flames. The mechanisms by which hydrogen enrichment affects combustion instabilities are extensively discussed particularly in relation to the feedback loop in thermoacoustic combustion systems. The paper concludes with a summary of the key combustion instability challenges associated with hydrogen addition to methane flames and offers prospects for future research. In summary the review highlights the interaction between hydrogenenriched methane flames and thermoacoustic phenomena providing a foundation for the development of stable low-emission combustion systems in industrial marine applications incorporating hydrogen enrichment.
Methodology for Evaluating and Comparing Different Sustainable Energy Generation and Storage Systems for Residential Buildings—Application to the Case of Spain
Nov 2025
Publication
This paper focuses on assessing different sustainable energy generation and storage systems for residential buildings in Spain identifying the best-performing system according to the end-user requirements. As outlined by the consulted literature the authors have selected two types of hybrid configurations—a Photovoltaic System with Battery Backup (PSBB) and a Photovoltaic System with Hydrogen Hybrid Storage Backup (PSHB)—and a Grid-Based System with Renewable Hydrogen Contribution (GSHC) is proposed. A Fuzzy Analytical Hierarchy Process methodology (FAHP) is employed for evaluating the hybrid power systems from a multi-criteria approach: acquisition operational and environmental. The main requirements for selecting the optimal system are organized under these criteria and evaluated using key performance indicators. This methodology allows the selection of the best option considering objective and subjective system performance indicators. Beyond establishing the ranking a sensitivity analysis was conducted to provide insights into how individual criteria influence the ranking of the hybrid power systems alternatives. The results demonstrate that the selection of hybrid power systems for a residential building is highly dependent on consumer preferences but the PSBB system scores highly in operation and acquisition criteria while the GSHC has good performance in all the criteria.
Feasibility and Sensitivity Analysis of an Off-Grid PV/Wind Hybrid Energy System Integrated with Green Hydrogen Production: A Case Study of Algeria
Nov 2025
Publication
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the technoeconomic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer fuel cell and hydrogen storage) to supply both electricity and hydrogen to decentralized sites in Algeria. Using HOMER Pro five representative Algerian regions were analyzed accounting for variations in solar irradiation wind speed and groundwater availability. A deferrable water-extraction and treatment load was incorporated to model the water requirements of the electrolyzer. In addition a comprehensive sensitivity analysis was conducted on solar irradiation wind speed and the capital costs of PV panels and wind turbines to capture the effects of renewable resource and investment cost fluctuations. The results indicate significant regional variation with the levelized cost of energy (LCOE) ranging from 0.514 to 0.868 $/kWh the levelized cost of hydrogen (LCOH) between 8.31 and 12.4 $/kg and the net present cost (NPC) between 10.28 M$ and 17.7 M$ demonstrating that all cost metrics are highly sensitive to these variations.
Changes in the Operating Conditions of Distribution Gas Networks as a Function of Altitude Conditions and the Proportion of Hydrogen in Transported Natural Gas
Nov 2025
Publication
The article presents a comparison between the pressure conditions of a real low-pressure gas network and the results of hydraulic calculations obtained using various simulation programs and empirical equations. The calculations were performed using specialized gas network analysis software: STANET (ver 10.0.26) SimNet SSGas 7 and SONET. Additionally the simulation results were compared with calculations based on the empirical Darcy–Weisbach and Renouard equations. In the first part of the analysis two calculation models were compared. In one model the geodetic elevation of individual network nodes was included (elevation-aware model) while in the second calculations were performed without considering node elevation (flat model). For low-pressure gas networks accounting for elevation is critical due to the presence of the pressure recovery phenomenon which does not occur in medium- and high-pressure networks. Furthermore considering the growing need to increase the share of renewable energy the study also examined the network’s operating conditions when using natural gas–hydrogen mixtures. The following hydrogen concentrations were considered: 2.5% 5.0% 10.0% 20.0% and 50.0%. The results confirm the importance of incorporating elevation data in the modeling of low-pressure gas networks. This is supported by the small differences between calculated results and actual pressure measurements taken from the operating network. Moreover increasing the hydrogen content in the mixture intensifies the pressure recovery effect. The hydraulic results obtained using different computational tools were consistent and showed only minor discrepancies.
Durable Pt-Decorated NiFe-LDH for High-Current-Density Electrocatalytic Water Splitting Under Alkaline Conditions
Nov 2025
Publication
The development of durable and efficient catalysts capable of driving both hydrogen and oxygen evolution reactions is essential for advancing sustainable hydrogen production through overall water electrolysis. In this study we developed a corrosion-mediated approach where Ni ions originate from the self-corrosion of the nickel foam (NF) substrate to construct Pt-modified NiFe layered double hydroxide (Pt-NiFeOxHy@NiFe-LDH) under ambient conditions. The obtained catalyst exhibits a hierarchical architecture with abundant defect sites which favor the uniform distribution of Pt clusters and optimized electronic configuration. The Pt-NiFeOxHy@NiFe-LDH catalyst constructed through the interaction between Pt sites and defective NiFe layered double hydroxide (NiFe-LDH) demonstrates remarkable hydrogen evolution reaction (HER) activity delivering an overpotential as low as 29 mV at a current density of 10 mA·cm−2 and exhibiting a small tafel slope of 34.23 mV·dec−1 in 1 M KOH together with excellent oxygen evolution reaction (OER) performance requiring only 252 mV to reach 100 mA·cm−2 . Moreover the catalyst demonstrates outstanding activity and durability in alkaline seawater maintaining stable operation over long-term tests. The Pt-NiFeOxHy@NiFe-LDH electrode when integrated into a two-electrode system demonstrates operating voltages as low as 1.42 and 1.51 V for current densities of 10 and 100 mA·cm−2 respectively and retains outstanding stability under concentrated alkaline conditions (6 M KOH 70 ◦C). Overall this work establishes a scalable and economically viable pathway toward high-efficiency bifunctional electrocatalysts and deepens the understanding of Pt-LDH interfacial synergy in promoting water-splitting catalysis.
Correlation Development for Para-to-Ortho Hydrogen Catalytic Conversion in Vapor-Cooled Shields of Hydrogen Tanks
Nov 2025
Publication
The cooling effect from the para-ortho hydrogen conversion (POC) combined with a vaporcooled shield (VCS) and multi-layer insulation (MLI) can effectively extend the storage duration of liquid hydrogen in cryogenic tanks. However there is currently no effective and straightforward empirical correlation available for predicting the catalytic POC efficiency in VCS pipelines. This study focuses on the development of correlations for the catalytic conversion of para-hydrogen to ortho-hydrogen in pipelines particularly in the context of cryogenic hydrogen storage systems. A model that incorporates the Langmuir adsorption characteristics of catalysts and introduces the concept of conversion efficiency to quantify the catalytic process’s performance is introduced. Experimental data were obtained in the temperature range of 141.9~229.9 K from a cryogenic hydrogen catalytic conversion facility where the effects of temperature pressure and flow rate on the catalytic conversion efficiency were analyzed. Based on a validation against the experimental data the proposed model offers a reliable method for predicting the cooling effects and optimizing the catalytic conversion process in VCS pipelines which may contribute to the improvement of liquid hydrogen storage systems enhancing both the efficiency and duration of storage.
A Review and Inventory of U.S. Hydrogen Emissions for Production, Distribution and Storage
Nov 2025
Publication
In response to the growing global interest in hydrogen as an energy carrier this study provides the first attempt to develop a baseline inventory of U.S. hydrogen emissions from production distribution and storage. The scope of this study was limited to pure hydrogen emissions and excludes emissions from low purity hydrogen streams and carriers. A detailed literature search was conducted utilizing various greenhouse gas emissions inventory protocol principles and guidelines to consolidate a list of activity data and emission factors. The best available activity data and emission factors were then selected via a Multi-Criteria-Based Decision Making Method named Technique for Order Preference by Similarity to Ideal Solution or modelled using best-engineering estimates. The study estimated total U.S. hydrogen emissions of 0.063 MMTA with emission bounds ranging from 0.02 to 0.11 MMTA. Given the total estimated H2 production capacity of 7.97 MMTA the study estimates a total U.S. hydrogen emission rate for production distribution and storage of 0.79% (0.26%–1.32%). To reduce the uncertainty in the estimated total hydrogen emissions future work should be conducted to measure facility-level hydrogen emission factors across multiple sectors. The inventory framework developed in this study can serve as a living document that can be updated and enhanced as more empirical data is obtained. This study also provides detailed insights regarding key emission or leakage sources and causes from each supply chain stage. The insights and conclusions from this study can provide direction for hydrogen production companies and safety professionals as they develop hydrogen emission mitigation measures and controls.
Deployment of Modular Renewable Energy Sources and Energy Storage Schemes in a Renewable Energy Valley
Nov 2025
Publication
While community energy initiatives and pilot projects have demonstrated technical feasibility and economic benefits their site-specific nature limits transferability to systematic scalable investment models. This study addresses this gap by proposing a modular framework for Renewable Energy Valleys (REVs) developed from real-world Community Energy Lab (CEL) demonstrations in Crete Greece which is an island with pronounced seasonal demand fluctuation strong renewable potential and ongoing hydrogen valley initiatives. Four modular business schemes are defined each representing different sectoral contexts by combining a baseline of 50 residential units with one representative large consumer (hotel rural households with thermal loads municipal swimming pool or hydrogen bus). For each scheme a mixed-integer linear programming model is applied to optimally size and operate integrated solar PV wind battery (BAT) energy storage and hydrogen systems across three renewable energy penetration (REP) targets: 90% 95% and 99.9%. The framework incorporates stochastic demand modeling sector coupling and hierarchical dispatch schemes. Results highlight optimal technology configurations that minimize dependency on external sources and curtailment while enhancing reliability and sustainability under Mediterranean conditions. Results demonstrate significant variation in optimal configurations across sectors and targets with PV capacity ranging from 217 kW to 2840 kW battery storage from 624 kWh to 2822 kWh and hydrogen systems scaling from 65.2 kg to 192 kg storage capacity. The modular design of the framework enables replication beyond the specific context of Crete supporting the scalable development of Renewable Energy Valleys that can adapt to diverse sectoral mixes and regional conditions.
Benefit Allocation Strategies for Electric–Hydrogen Coupled Virtual Power Plants with Risk–Reward Tradeoffs
Nov 2025
Publication
Driven by carbon neutrality goals electric–hydrogen coupled virtual power plants (EHCVPPs) integrate renewable hydrogen production with power system flexibility resources emerging as a critical technology for large-scale renewable integration. As distributed energy resources (DERs) within EHCVPPs diversify heterogeneous resources generate diversified market values. However inadequate benefit allocation mechanisms risk reducing participation incentives destabilizing cooperation and impairing operational efficiency. To address this benefit allocation must balance fairness and efficiency by incorporating DERs’ regulatory capabilities risk tolerance and revenue contributions. This study proposes a multi-stage benefit allocation framework incorporating risk–reward tradeoffs and an enhanced optimization model to ensure sustainable EHCVPP operations and scalability. The framework elucidates bidirectional risk–reward relationships between DERs and EHCVPPs. An individualized risk-adjusted allocation method and correction mechanism are introduced to address economic-centric inequities while a hierarchical scheme reduces computational complexity from diverse DERs. The results demonstrate that the optimized scheme moderately reduces high-risk participants’ shares increasing operator revenue by 0.69% demand-side gains by 3.56% and reducing generation-side losses by 1.32%. Environmental factors show measurable yet statistically insignificant impacts. The framework meets stakeholders’ satisfaction and minimizes deviation from reference allocations.
Hydrogen Diffusivity and Hydrogen Traps Behavior of a Tempered and Untempered Martensitic Steel
Nov 2025
Publication
The effect of tempering temperature and tempering time on the density of hydrogen traps hydrogen diffusivity and microhardness in a vanadium-modified AISI 4140 martensitic steel was determined. Tempering parameters were selected to activate the second third and fourth tempering stages. These conditions were intended to promote specific microstructural transformations. Permeability tests were performed using the electrochemical method developed by Devanathan and Stachurski and microhardness was measured before and after these tests. It was observed that hydrogen diffusivity is inversely proportional to microhardness while the density of hydrogen traps is directly proportional to microhardness. The lowest hydrogen diffusivity the highest trap density and the highest microhardness were obtained in the as-quenched condition and the tempering at 286 ◦C for 0.25 h. In contrast tempering at a temperature corresponding to the fourth tempering stage increases hydrogen diffusivity and decreases the density of hydrogen traps and microhardness. However as the tempering time or temperature increases the opposite occurs which is attributed to the formation of alloy carbides. Finally hydrogen has a softening effect for tempering temperatures corresponding to the fourth tempering stage tempering times of 0.25 h and in the as-quenched condition. However with increasing tempering time hydrogen has a hardening effect.
Hybrid Renewable Energy Systems for Off-Grid Electrification: A Comprehensive Review of Storage Technologies, Metaheuristic Optimization Approaches and Key Challenges
Nov 2025
Publication
Hybrid Renewable Energy Systems (HRESs) are a practical solution for providing reliable low-carbon electricity to off-grid and remote communities. This review examines the role of energy storage within HRESs by systematically comparing electrochemical mechanical thermal and hydrogen-based technologies in terms of technical performance lifecycle cost operational constraints and environmental impact. We synthesize findings from implemented off-grid projects across multiple countries to evaluate real-world performance metrics including renewable fraction expected energy not supplied (EENS) lifecycle cost and operation & maintenance burdens. Special attention is given to the emerging role of hydrogen as a long-term and cross-sector energy carrier addressing its technical regulatory and financial barriers to widespread deployment. In addition the paper reviews real-world implementations of off-grid HRES in various countries summarizing practical outcomes and lessons for system design and policy. The discussion also includes recent advances in metaheuristic optimization algorithms which have improved planning efficiency system reliability and cost-effectiveness. By combining technological operational and policy perspectives this review identifies current challenges and future directions for developing sustainable resilient and economically viable HRES that can accelerate equitable electrification in remote areas. Finally the review outlines key limitations and future directions calling for more systematic quantitative studies long-term field validation of emerging technologies and the development of intelligent Artificial Intelligence (AI)-driven energy management systems within broader socio-techno-economic frameworks. Overall this work offers concise insights to guide researchers and policymakers in advancing the practical deployment of sustainable and resilient HRES.
The Energy Transition in Colombia: Government Projections and Realistic Scenarios
Nov 2025
Publication
Energy transition is crucial for climate change mitigation and Sustainable Development Goals (SDGs) and has been a key government focus in Colombia since 2022 which must carefully consider its energy roadmap. This study evaluates three potential scenarios for achieving nearly 100% renewable energy by 2035: replacing fossil fuels with biofuels using hydrogen for transport and industrial heat and relying entirely on renewable electricity. This paper discusses these scenarios’ technical economic and social challenges including the need for substantial investments in renewable energy technologies and energy storage systems to replace fossil fuels. The discussion highlights the importance of balancing energy security environmental concerns and economic growth while addressing social priorities such as poverty eradication and access to healthcare and education. The results show that while the Colombian government’s energy transition goals are commendable a rapid energy transition requires 4 to 8 times the government’s projected 34 billion USD investment making it economically unfeasible. Notably focusing on wind photovoltaic and green hydrogen systems which need storage is too costly. Furthermore replacing fossil fuels in transport is impractical though increasing biofuel production could partially substitute fossil fuels. Less energy-intensive alternatives like trains and waterway transport should be considered to reduce energy demand and carbon footprint.
Enhancing Regional Integrated Energy Systems Through Seasonal Hydrogen Storage: Insights from a Stackelberg Game Model
Nov 2025
Publication
This study enhances regional integrated energy systems by proposing a Stackelberg planning–operation model with seasonal hydrogen storage addressing source–network separation. An equilibrium algorithm is developed that integrates a competitive search routine with mixed-integer optimization. In the price–energy game framework the hydrogen storage operator is designated as the leader while energy producers load aggregators and storage providers act as followers facilitating a distributed collaborative optimization strategy within the Stackelberg game. Using an industrial park in northern China as a case study the findings reveal that the operator’s initiative results in a revenue increase of 38.60% while producer profits rise by 6.10% and storage-provider profits surge by 108.75%. Additionally renewable accommodation reaches 93.86% reflecting an absolute improvement of 20.60 percentage points. Total net energy imbalance decreases by 55.70% and heat-loss load is reduced by 31.74%. Overall the proposed approach effectively achieves cross-seasonal energy balancing and multi-party gains providing an engineering-oriented reference for addressing energy imbalances in regional integrated energy systems.
Hydrogen Blending as a Transitional Solution for Decarbonizing the Jordanian Electricity Generation Sector
Nov 2025
Publication
While renewable energy deployment has accelerated in recent years fossil fuels continue to play a dominant role in electricity generation worldwide. This necessitates the development of transitional strategies to mitigate greenhouse gas emissions from this sector while gradually reducing reliance on fossil fuels. This study investigates the potential of blending green hydrogen with natural gas as a transitional solution to decarbonize Jordan’s electricity sector. The research presents a comprehensive techno-economic and environmental assessment evaluating the compatibility of the Arab Gas Pipeline and major power plants with hydrogen–natural gas mixtures considering blending limits energy needs environmental impacts and economic feasibility under Jordan’s 2030 energy scenario. The findings reveal that hydrogen blending between 5 and 20 percent can be technically achieved without major infrastructure modifications. The total hydrogen demand is estimated at 24.75 million kilograms per year with a reduction of 152.7 thousand tons of carbon dioxide per annum. This requires 296980 cubic meters of water per year equivalent to only 0.1 percent of the National Water Carrier’s capacity indicating a negligible impact on national water resources. Although technically and environmentally feasible the project remains economically constrained requiring a carbon price of $1835.8 per ton of carbon dioxide for economic neutrality.
Hydrothermal Treatment of Kitchen Waste as a Strategy for Dark Fermentation Biohydrogen Production
Nov 2025
Publication
This study presents an innovative approach to the production of hydrogen from liquids following hydrothermal treatment of biowaste offering a potential solution for renewable energy generation and waste management. By combining biological and hydrothermal processes the efficiency of H2 production can be significantly improved contributing to a reduced carbon footprint and lower reliance on fossil fuels. The inoculum used was fermented sludge from a wastewater treatment plant which had been thermally pretreated to enhance microbial activity towards hydrogen production. Kitchen waste consisting mainly of plant-derived materials (vegetable matter) was used as a substrate. The process was conducted in batch 1-L bioreactors. The results showed that higher pretreatment temperatures (up to 180 ◦C) increased the hydrolysis of compounds and enhanced H2 production. However temperatures above 180 ◦C resulted in the formation of toxic compounds such as catechol and hydroquinone which inhibited H2 production. The highest hydrogen production was achieved at 180 ◦C (approximately 66 mL H2/gTVSKW). The standard Gompertz model was applied to describe the process kinetics and demonstrated an excellent fit with the experimental data (R2 = 0.99) confirming the model’s suitability for optimizing H2 production. This work highlights the potential of combining hydrothermal and biological processes to contribute to the development of sustainable energy systems within the circular economy.
Green Hydrogen Market and Green Cryptocurrencies: A Dynamic Correlation Analysis
Nov 2025
Publication
The urgent need to mitigate climate change has elevated green hydrogen as a sustainable alternative to fossil fuels while green cryptocurrencies have emerged to address the environmental concerns of traditional cryptocurrency mining. This study investigates the dynamic correlation between the green hydrogen market and selected green cryptocurrencies (Cardano Stellar Hedera Algorand and Chia) from July 2021 to April 2024 utilizing the Dynamic Conditional Correlation GARCH (DCC-GARCH) model with robustness checks using EGARCH and GJR-GARCH specifications. Our findings reveal significant correlations with peaks reaching up to 50% in 2022 a period likely influenced by the Russia-Ukraine conflict. Subsequently a decline in these correlations was observed in 2023. These results underscore the interconnectedness of sustainability-driven markets suggesting potential contagion effects during periods of global instability. The high persistence of correlation shocks (α + β values approaching unity) indicates that correlation regimes tend to be long- lasting with important implications for portfolio diversification and risk management strategies. Robustness checks using EGARCH and GJR-GARCH specifications confirmed qualitatively similar patterns reinforcing the validity of our findings into the evolving landscape of green finance and energy
Application of Machine Learning and Data Augmentation Algorithms in the Discovery of Metal Hydrides for Hydrogen Storage
Nov 2025
Publication
The development of efficient and sustainable hydrogen storage materials is a key challenge for realizing hydrogen as a clean and flexible energy carrier. Among various options metal hydrides offer high volumetric storage density and operational safety yet their application is limited by thermodynamic kinetic and compositional constraints. In this work we investigate the potential of machine learning (ML) to predict key thermodynamic properties—equilibrium plateau pressure enthalpy and entropy of hydride formation—based solely on alloy composition using Magpie-generated descriptors. We significantly expand an existing experimental dataset from ~400 to 806 entries and assess the impact of dataset size and data augmentation using the PADRE algorithm on model performance. Models including Support Vector Machines and Gradient Boosted Random Forests were trained and optimized via grid search and cross-validation. Results show a marked improvement in predictive accuracy with increased dataset size while data augmentation benefits are limited to smaller datasets and do not improve accuracy in underrepresented pressure regimes. Furthermore clustering and cross-validation analyses highlight the limited generalizability of models across different material classes though high accuracy is achieved when training and testing within a single hydride family (e.g. AB2). The study demonstrates the viability and limitations of ML for accelerating hydride discovery emphasizing the importance of dataset diversity and representation for robust property prediction.
Performance Analysis of Natural Gas Centrifugal Compressors Under Hydrogen-Blended Conditions
Nov 2025
Publication
The transport of natural gas blended with hydrogen is a key strategy for the low-carbon energy transition. However the influence mechanism of its thermo-physical property variations on centrifugal compressor performance remains insufficiently understood. This study systematically investigates the effects of the hydrogen blending ratio (HBR 0–30%) inlet temperature and rotational speed on key compressor parameters (pressure ratio polytropic efficiency and outlet temperature) through numerical simulations. In order to evaluate the influence of hydrogen blending on the performance and stability of centrifugal compressors a three-dimensional model of the compressor was established and the simulation conducted was verified with the experimental data. Results indicate that under constant inlet conditions both the pressure ratio and outlet temperature decrease with increasing HBR while polytropic efficiency remains relatively stable. Hydrogen blending significantly expands the surge margin shifting both surge and choke lines downward and consequently reducing the stable operating range by 27.11% when hydrogen content increases from 0% to 30%. This research provides theoretical foundations and practical guidance for optimizing hydrogen-blended natural gas centrifugal compressor design and operational control.
No more items...