Publications
Life-cycle Assessment and Cost Analysis of Hydrogen Production via Aluminium-seawater Reactions
Jun 2025
Publication
Presented is an evaluation of the carbon footprint and costs associated with hydrogen production via the aluminum-water reaction (AWR) identifying an optimized scenario that achieves 1.45 kgCO2 equiv per kg of hydrogen produced. U.S.-based data are used to compare results with conventional production methods and to assess hydrogen use in fuel-cell passenger vehicles. In the optimized scenario major contributors include the use of recycled aluminum (0.38 kgCO2 equiv) aluminum processing (0.45 kgCO2 equiv) and alloy activator recovery (0.57 kgCO2 equiv). A cost analysis estimates hydrogen production at $9.2/kg when using scrap aluminum alloy recovery and recycling thermal energy aligning with current green hydrogen prices. Reselling reaction byproducts such as boehmite could generate revenue 5.6 times greater than input costs enhancing economic feasibility. The cradle-to-grave assessment suggests that aluminum fuel as an energy carrier for hydrogen distribution and fuel cell vehicle applications offers a low-emission and economically viable pathway for clean energy deployment.
Energy Storage: From Fundamental Principles to Industrial Applications
Jun 2025
Publication
The increasing global energy demand and the transition toward sustainable energy systems have highlighted the importance of energy storage technologies by ensuring efficiency reliability and decarbonization. This study reviews chemical and thermal energy storage technologies focusing on how they integrate with renewable energy sources industrial applications and emerging challenges. Chemical Energy Storage systems including hydrogen storage and power-to-fuel strategies enable long-term energy retention and efficient use while thermal energy storage technologies facilitate waste heat recovery and grid stability. Key contributions to this work are the exploration of emerging technologies challenges in large-scale implementation and the role of artificial intelligence in optimizing Energy Storage Systems through predictive analytics real-time monitoring and advanced control strategies. This study also addresses regulatory and economic barriers that hinder widespread adoption emphasizing the need for policy incentives and interdisciplinary collaboration. The findings suggest that energy storage will be a fundamental pillar of the sustainable energy transition. Future research should focus on improving material stability enhancing operational efficiency and integrating intelligent management systems to maximize the benefits of these technologies for a resilient and low-carbon energy infrastructure.
Tracing the Research Pulse: A Bibliometric Analysis and Systematic Review of Hydrogen Production Through Gasification
Jun 2025
Publication
Clean hydrogen is expected to play a crucial role in the future decarbonized energy mix. This places the gasification of biomass as a critical conversion pathway for hydrogen production owing to its carbon neutrality. However there is limited research on the direction of the body of literature on this subject matter. Utilising the Bibliometrix package R this paper conducts a systematic review and bibliometric analysis of the literature on gasification-derived hydrogen production over the previous three decades. The results show a decade-wise spike in hydrogen research mostly contributed by China the United States and Europe whereas the scientific contribution of Africa on the topic is limited with less than 6% of the continent’s research output on the subject matter sponsored by African institutions. The current trend of the research is geared towards alignment with the Paris Agreement through feedstock diversification to include renewable sources such as biomass and municipal solid waste and decarbonising the gasification process through carbon-capture technologies. This review reveals a gap in the experimental evaluation of heterogenous organic municipal solid waste for hydrogen production through gasification within the African context. The study provides an incentive for policy actors and researchers to advance the green hydrogen economy in Africa.
Techno-Economic Analysis of Onsite Sustainable Hydrogen Production via Ammonia Decomposition with Heat Recovery System
Jun 2025
Publication
Hydrogen offers a promising solution to reduce emissions in the energy sector with the growing need for decarbonisation. Despite its environmental benefits the use of hydrogen presents significant challenges in storage and transport. Many studies have focused on the different types of hydrogen production and analysed the pros and cons of each technique for different applications. This study focuses on techno-economic analysis of onsite hydrogen production through ammonia decomposition by utilising the heat from exhaust gas generated by hydrogen-fuelled gas turbines. Aspen Plus simulation software and its economic evaluation system are used. The Siemens Energy SGT-400 gas turbine’s parameters are used as the baseline for the hydrogen gas turbine in this study together with the economic parameters of the capital expenditure (CAPEX) and operating expenditure (OPEX) are considered. The levelised cost of hydrogen (LCOH) is found to be 5.64 USD/kg of hydrogen which is 10.6% lower than that of the conventional method where a furnace is used to increase the temperature of ammonia. A major contribution of the LCOH comes from the ammonia feed cost up to 99%. The price of ammonia is found to be the most sensitive parameter of the contribution to LCOH. The findings of this study show that the use of ammonia decomposition via heat recovery for onsite hydrogen production with ammonic recycling is economically viable and highlight the critical need to further reduce the prices of green ammonia and blue ammonia in the future.
A Study on Thermal Management Systems for Fuel-Cell Powered Regional Aircraft
Jun 2025
Publication
This work studies the feasibility of integrating a hydrogen-powered propulsion system in a regional aircraft at the conceptual design level. The developed system consists of fuel cells which will be studied at three technological levels and batteries also studied for four hybridization factors (X = 0 0.05 0.10 0.20). Hydrogen can absorb great thermal loads since it is stored in the tank at cryogenic temperatures and is used as fuel in the fuel cells at around 80 ◦C. Taking advantage of this characteristic two thermal management system (TMS) architectures were developed to ensure the proper functioning of the aircraft during the designated mission: A1 which includes a vapor compression system (VCS) and A2 which omits it for a simpler design. The models were developed in MATLAB® and consist of different components and technologies commonly used in such systems. The analysis reveals that A2 due to the exclusion of the VCS outperformed A1 in weight (10–23% reduction) energy consumption and drag. A1’s TMS required significantly more energy due to the VCS compressor. Hybridization with batteries increased system weight substantially (up to 37% in A2) and had a greater impact on energy consumption in A2 due to additional fan work. Hydrogen’s heat sink capacity remained underutilized and the hydrogen tank was deemed suitable for a non-integral fuselage design. A2 had the lowest emissions (10–20% lower than A1 for X = 0) but hybridization negated these benefits significantly increasing emissions in pessimistic scenarios.
Proposal for an Energy Efficiency Index for Green Hydrogen Production—An Integrated Approach
Jun 2025
Publication
In the context of mounting concerns over carbon emissions and the need to accelerate the energy transition green hydrogen has emerged as a strategic solution for decarbonizing hard-to-abate sectors. This paper introduces a methodological innovation by proposing the Green Hydrogen Efficiency Index (GHEI) a unified and quantitative framework that integrates multiple stages of the hydrogen value chain into a single comparative metric. The index encompasses six core criteria: electricity source water treatment electrolysis efficiency compression end-use conversion and associated greenhouse gas emissions. Each are normalized and weighted to reflect different performance priorities. Two weighting profiles are adopted: a first profile which assigns equal importance to all criteria referred to as the balanced profile and a second profile derived using the analytic hierarchy process (AHP) based on structured expert judgment named the AHP profile. The methodology was developed through a systematic literature review and was applied to four representative case studies sourced from the academic literature covering diverse configurations and geographies. The results demonstrate the GHEI’s capacity to distinguish the energy performance of different green hydrogen routes and support strategic decisions related to technology selection site planning and logistics optimization. The results highlight the potential of the index to contribute to more sustainable hydrogen value chains and advance decarbonization goals by identifying pathways that minimize energy losses and maximize system efficiency
MOF-Derived Electrocatalysts for High-Efficiency Hydrogen Production via Water Electrolysis
Jun 2025
Publication
Water electrolysis for hydrogen production has garnered significant attention in the context of increasing global energy demands and the “dual-carbon” strategy. However practical implementation is hindered by challenges such as high overpotentials high catalysts costs and insufficient catalytic activity. In this study three mono and bimetallic metal−organic framework (MOFs)-derived electrocatalysts Fe-MOFs Fe/Co-MOFs and Fe/Mn-MOFs were synthesized via a one-step hydrothermal method using nitroterephthalic acid (NO2-BDC) as the ligand and NN-dimethylacetamide (DMA) as the solvent. Electrochemical tests demonstrated that the Fe/Mn-MOFs catalyst exhibited superior performance achieving an overpotential of 232.8 mV and a Tafel slope of 59.6 mV·dec−1 alongside the largest electrochemical active surface area (ECSA). In contrast Fe/Co-MOFs displayed moderate catalytic activity while Fe-MOFs exhibited the lowest efficiency. Stability tests revealed that Fe/Mn-MOFs retained 92.3% of its initial current density after 50 h of continuous operation highlighting its excellent durability for the oxygen evolution reaction (OER). These findings emphasize the enhanced catalytic performance of bimetallic MOFs compared to monometallic counterparts and provide valuable insights for the development of high-efficiency MOF-based electrocatalysts for sustainable hydrogen production.
Prospects for the Development of Hydrogen Technologies: A Study of Projects in Europe and Australia
Jun 2025
Publication
This study examines the development of hydrogen energy technologies across continents focusing on the concentration of expertise in hydrogen production within specific cross-border alliances and individual countries. The evolution of green hydrogen is assessed through an analysis of 297 hydrogen projects in Europe and Australia. The implementation of projects is constrained by high production costs limiting the price competitiveness of the final product. The analysis reveals that electrolysis is the predominant technology employed in hydrogen production with mobility being the primary area of application. The study includes a forecast indicating a significant decrease in auction prices for green hydrogen products due to economies of scale. Learning curve modeling confirms an expected reduction in auction prices by a factor of 2.5–3.7 over the next decade. However delays in project implementation and the relocation of 49 projects across Australia. The results obtained indicate the existence of barriers implementation of hydrogen technologies. Although green hydrogen demonstrates strong potential for growth and scalability realizing all announced projects will require enhanced policy support.
Laboratory Evaluation of Cyclic Underground Hydrogen Storage in the Temblor Sandstone of the San Joaquin Basin, California
Jun 2025
Publication
Underground Hydrogen Storage (UHS) in depleted oil and gas reservoirs could provide a cost-effective solution to balance seasonal fluctuations in renewable energy generation. However data and knowledge on UHS at subsurface conditions are limited so it is difficult to estimate how effective this type of storage could be. In this study we perform high pressure experiment to measure the effectiveness of cyclic hydrogen (H2) storage in a specimen of Temblor sandstone retrieved from the San Joaquin Basin of California. Our experiment mimics reservoir pressure conditions to measure H2-brine relative permeability and fluid-rock interactions over the course of ten charging and discharging cycles. Initial gas breakthrough occurred at 15 % to 25 % H2 saturation in the specimen with 3 % NaCl brine as the resident fluid. Continuing injecting to 4 pore volumes (PV) of H2 yielded an asymptotic H2 saturation of 38 % to 41 % a level often referred to as the irreducible gas saturation based on two-phase flow. The boundary condition in this study mimics the near wellbore region which experiences bidirectional H2 flow. This bi-directional flow led to evaporative drying of the specimen resulting in 94 % H2 saturation at the end of 10th cycle. This indicates that cyclic flow and evaporative drying can lead to more efficient reservoir storage where a larger fraction of the reservoir porosity is usable to store H2. The produced gas stream consisted of H2 mixed with 8 % to 22 % H2O indicating formation dry-out by evaporation. Meanwhile produced water chemistry indicated calcite and silicate dissolution with calcite sourced from fossil fragments. This led to a loss of cementation and weakened the rock sample. Combined our results indicate dry-out compaction increased H2 saturation rock weakening and permeability loss during cyclic UHS. Overall we anticipate that the combined effects should lead to higher than anticipated UHS storage efficiency per volume of sandstone reservoir rock.
An Innovatively Designed Community-based Hybrid Energy System to Generate its Needs of Electricity, Heat, Hot Water and Hydrogen in a Sustainable Manner
Jun 2025
Publication
This study introduces an innovative nuclear-biomass integrated energy and cleaner production multigeneration system incorporating sonohydrogen technology and a desalination unit for the sustainable and efficient production of hydrogen electricity hot water and heat. A small modular nuclear reactor acts as the primary energy source ensuring stable and low-carbon power generation while enhancing hydrogen yield through sonochemical processes. Biomass-derived biogas is strategically utilized for both electricity generation and hydrogen production via steam methane reforming. The heat wasted in the system is efficiently utilized. A high-performance multistage flash desalination unit converts some of the waste heat into desalinated seawater. In addition a portion of the waste heat is utilized for heat production. The results of this study show that the overall energy and exergy efficiencies of the integrated system are 82.7 % and 68.3 % respectively. Through detailed energy and exergy assessments the study demonstrates the feasibility of the proposed system in enhancing energy conversion efficiency improving waste heat utilization and increasing sustainability. In addition the results of the cost assessment show that the integrated energy system is economically viable in the long term with hydrogen production driving substantial annual revenue and profitability projected within the first decade of operation. The findings highlight the system’s potential to contribute to cleaner energy production by reducing greenhouse gas emissions maximizing resource efficiency and advancing hydrogen and freshwater production technologies.
Unlocking Sweden's Hydrogen Export Potential: A Techno-Economic Analysis of Compressed Hydrogen and Chemical Carriers
Jun 2025
Publication
Sweden with its abundant access to low-cost fossil-free electricity is well-positioned to become a significant hydrogen exporter. This study presents a techno-economic analysis of different hydrogen carriers—compressed hydrogen methanol ammonia and liquid organic hydrogen carriers (LOHC)—for export applications. Using the Northern Green Crane Project as a reference for scale the analysis focuses on cost optimization for hydrogen production storage and transportation. A linear programming model is developed to optimize capacities and operational strategies for each carrier ensuring a fair basis for comparison. Results indicate that LOHC and ammonia are competitive with compressed hydrogen showing particular promise for larger-scale long-distance deliveries. These findings offer valuable insights for policymakers and industry stakeholders developing Sweden’s hydrogen export strategies.
Experimental Investigation of a Newly Developed Hydrogen Production Cycle for Green Energy Applications
Jun 2025
Publication
This study introduces a novel hydrogen production system using the three-step copper chlorine (Cu-Cl) cycle. The proposed thermochemical cycle offers an innovative configuration that performs hydrogen production without an electrolysis step eliminating high-cost components such as membranes catalysts and electricity. The Cu-Cl cycle enables large-scale hydrogen production and is examined in various configurations including two- three- four- and five-step Cu-Cl cycles. Microscale experimental studies are conducted on a novel three-step Cu-Cl thermochemical cycle that works entirely on thermal energy input without electrolysis. In experimental studies some parameters that directly affect the amount of hydrogen production are investigated. The effects of parameters such as temperature steam/copper (S/C) ratio and reaction time on hydrogen production in the hydrolysis step are evaluated. The investigation also examined the impact of increasing temperature in the hydrolysis reaction on the generation of undesirable byproducts. Additionally the effect of increased temperatures in the decomposition process on oxygen formation is examined. In the optimization studies the individual and interactive effects of the parameters are analyzed using the Response Surface Methodology (RSM) and BoxBehnken Design (BBD) of experimental methods. The results of this study further show that the conditions with the highest hydrogen production are a S/C ratio of 55 a temperature of 400 ◦C and a reaction time between 30 and 40 min. It is also observed that hydrogen concentration increases with the increase in temperature and time and that the maximum level of 134.8 ppm is reached under optimum conditions.
Hydrogen for Long-haul Road Freight: A Realist Retroductive Assessment
Jun 2025
Publication
This study focuses on arguably the most contentious choice of energy supply option available for decarbonizing general-purpose long-haul road freight: hydrogen. For operators infrastructure providers energy providers and vehicle manufacturers to make the investments necessary to enable this transition it is essential to evaluate the feasibility of individual energy supply choices. A literature review is conducted identifying ten requirements for an energy supply choice to be feasible which are then translated into “what would need to be true” conditions for hydrogen to meet these requirements. Considering these evidence from literature is used to assess the likelihood of each condition becoming true within the lifespan of a vehicle bought today. It is concluded that it is unlikely that hydrogen will become feasible in this time frame meaning it can be disregarded as a current vehicle purchase consideration as it will not undermine the competitiveness or resale value of a vehicle using a different energy source bought today. There are two principal innovations in the study approach: the consideration of socio-technical and political as well as techno-economic factors; and the application of realist retroductive option assessment. While not necessary to address the research question regarding hydrogen a realist retroductive assessment is also presented for other prominent low carbon energy source options: battery electric electric road systems (ERS) and biofuels; and the conditions under which these options could be feasible are considered.
Hydrogen-ready Power Plants: Optimizing Pathways to a Decarbonized Energy System in Germany
Jun 2025
Publication
The integration of hydrogen technologies is widely regarded as a transformative step in the energy transition. Recently the German government unveiled a Power Plant Strategy to promote H2-Ready Combined-Cycle Gas Turbines (H2-CCGT) which are intended to initially run on natural gas and transition to green hydrogen by 2040 at the latest. This study assesses the role of H2-Ready power plants in a low-carbon transition and explores plausible pathways using a capacity expansion model for Germany. This topic is particularly relevant for other countries aiming to deploy a large share of renewables and considering H2-CCGT as a flexible backup solution to ensure system flexibility and achieve deep decarbonization. Our results indicate that H2-CCGT enhance system flexibility and significantly alleviate the investments need for additional flexibility and renewable generation capacity and reduce renewable-energy curtailment by more than 35 %. Moreover our results also demonstrate that allowing hydrogen in CCGT does not entirely reduce the need for fossil fueled power plants as hydrogen becomes economically viable only with deep decarbonization or direct subsidies. We show that policy interventions can alter the transition pathways for achieving a decarbonized energy system. Our research challenges a prevailing narrative that financial support for hydrogen is needed to ensure a cost-efficient system decarbonization. More straightforward market-based policy instruments such as intensified CO2 pricing or regulatory frameworks such as earlier mandatory hydrogen shifts in H2-CCGT prove more efficient at cutting emissions and costs.
The Synergy Between Battery and Hydrogen Storage in Stand-alone Hybrid Systems: A Parameterised Load Approach
Jun 2025
Publication
Hydrogen is widely considered advantageous for long-duration storage applications however the conditions under which hydrogen outperforms batteries remain unclear. This study employs a novel load parameterisation approach to systematically examine the conditions under which integrating hydrogen significantly reduces the levelised cost of energy (LCOE). The study analyses a broad spectrum of 210 synthetic load profiles varying independently in duration frequency and timing at two Australian locations. This reveals that batteries dominate short frequent or wellaligned solar loads and that hydrogen becomes economically beneficial during prolonged infrequent or poorly aligned loads—achieving up to 122 % (Gladstone) and 97 % (Geelong) LCOE improvements under current fuel cell costs and even higher savings under reduced costs. This systematic method clarifies the load characteristics thresholds that define hydrogen’s advantage providing generalisable insights beyond individual case studies.
Optimal Operation Strategy for Multi-energy Systems Considering Renewable Energy Fluctuation and Carbon Emission
Jun 2025
Publication
Multi-energy systems (MESs) can address issues such as low renewable energy utilization and power imbalances by optimizing the integration of various energy sources. This paper proposes an optimization operation strategy for MES to regulate the hydrogen and battery storage system (HBRS) based on carbon emission factors (CEFs). Insufficient renewable energy utilization caused by reverse peak regulation can be addressed by guiding the optimal output of HBRS through this model thereby achieving multi-energy complementarity. The CEF is used to balance the output of the HBRS to achieve a low-carbon economic operating system. First the fluctuation of renewable energy is decomposed and reconstructed. Subsequently The HBRS system is utilized to smooth out the fluctuations caused by different frequencies of new energy and then the CEF is used to promote the output of the low-carbon subsystem. Finally comparative verification is conducted across validation cases to demonstrate the effectiveness of the proposed model and the optimization strategy.
Techno-economic Assessment of Hydrogen Production: Comparative Analysis of Electrolyser Technologies in a Hybrid PV/Wind System
Jun 2025
Publication
Green hydrogen is critical for achieving net-zero emissions with water electrolysis offering a CO2-free solution. This study provides a comprehensive comparative financial and economic assessment of a hybrid PV/wind hydrogen production system using three types of electrolysers including Alkaline Electrolyser (AEL) Proton Exchange Membrane Electrolyser (PEMEL) and Solid Oxide Electrolyser (SOEL). Key performance metrics such as net present value (NPV) Internal Rate of Return (IRR) revenues Earnings Before Interest Tax Depreciation and Amortization (EBITDA) Earning Before Taxes (EBT) Debt Service Coverage Ratio (DSCR) and levelized cost of Hydrogen (LCOH) are evaluated to identify the most cost-effective option. The findings reveal that AEL is the most economical solution achieving a higher NPV (503374 k€) and IRR (16.94 % for project IRR) though PEMEL and SOEL remain competitive. Other metrics such as DSCR show that the hydrogen project generates 30 % more cash flow than is required to cover its debt service. Additionally the results of the LCOH analysis demonstrate that a hybrid plant consisting of 10 % PV and 90 % wind is more cost-effective in the studied region than both solar-based or wind-based hydrogen production plants. AEL and PEMEL are approximately 7–6 €/kg less expensive than SOEL but this gap is expected to be narrowed by 2030. The hybrid renewable energy project reduces CO2 emissions by 6786.6 Mt over its lifetime. These findings guide policymakers and investors toward scalable cost-effective green hydrogen deployment emphasizing the synergy of hybrid renewables and mature electrolysis technologies.
Designing an Optimized Fueling Infrastructure for a Hydrogen Railway System
Jun 2025
Publication
Hydrogen use is increasing in transportation including within the railway sector. In collaboration with a governmental institution in the Netherlands we study how to design an efficient hydrogen fueling infrastructure for a railway system. The problem involves selecting yards in a network for hydrogen fueling assigning trains to these yards locating hydrogen storage and fueling stations and connecting them via pipelines. This key planning phase must avoid oversizing costly fueling infrastructure while accounting for track availability at yards and costs due to fueling operations. We formulate this novel problem which has the structure of a nested facility location problem as a mixed-integer linear program to minimize total annualized investment and operational costs. Due to the complexity of real-sized instances we propose a matheuristic that estimates the infrastructural costs for each yard and train assignment by combining a constructive algorithm with a set covering model. It then solves a single-stage facility location problem to select yards and assign trains followed by a yard-level improvement phase. Numerical experiments on a real Dutch case show that our approach delivers high-quality solutions quickly and offer insights into the optimal infrastructure design depending on the discretization of yard areas number of trains and other parameters.
Analysis of Hydrogen Network Tariffs in Relation to an Initially Reduced and Delayed Expansion of the German Hydrogen Network
Jun 2025
Publication
This study examines the economic and regulatory implications of the development of Germany’s hydrogen core network. Using a mathematical-economic model of the amortization account and a reproduction of the network topology based on the German transmission system operators’ draft proposals the analysis evaluates the impact of delaying the network expansion with completion postponed from 2032 to 2037. The proposed phased approach prioritizes geographically clustered regions and ensures sufficient demand alignment during each expansion stage. The results demonstrate that strategic adjustments to the network size and timing significantly enhance cost-efficiency. In the initially reduced and delayed scenario uncapped network tariffs remain below €15/ kWh/h/a suggesting that under specific conditions the amortization account may become redundant while maintaining supply security and supporting the market ramp-up of hydrogen. These findings highlight the potential for demand-driven phased hydrogen infrastructure development to reduce financial burdens and foster a sustainable transition to a hydrogen-based energy system.
A Review of Life Cycle Assessment for Fuel Cell Technologies: Advancing Clean Energy and Climate Solutions
Jun 2025
Publication
Fuel cell (FC) technologies are often regarded as a sustainable alternative to conventional combustion-based energy systems due to their low environmental impact and high efficiency. Thorough environmental assessments using Life Cycle Assessment (LCA) methodologies are needed to understand and mitigate their impacts. However there has been a lack of comprehensive reviews on LCA studies across all major types of FCs. This study reviews and synthesizes results from 44 peer-reviewed LCA studies from 2015 to 2024 covering six major FC types: alkaline (AFC) direct methanol (DMFC) molten carbonate (MCFC) proton- exchange membrane (PEMFC) solid oxide (SOFC) and phosphoric acid (PAFC). The review provides an updated overview of LCA practices and results over the past decade while identifying methodological inconsistencies and gaps. PEMFCs are the most frequently assessed FC typology covering 49 % of the studies followed by SOFCs at 38 % with no studies on DMFCs. Only 11 % of comparative studies carry out inter-comparison between FC types. Discrepancies in system boundary definitions across studies are identified highlighting the need for standardization to enhance comparability between studies. Global Warming Potential (GWP) evaluated in 100 % of the studies is the most assessed impact category. Fuel supply in the use phase a major contributor to greenhouse gas (GHG) emissions is under-assessed as it is usually aggregated with Operation and Maintenance (O&M) phase instead of discussed separately. GWP of energy production by all FC typologies spans from 0.026 to 1.76 kg CO₂-equivalent per kWh. Insufficient quantitative data for a meta-analysis and limited inter-comparability across FC types are noted as critical gaps. The study highlights the need for future research and policies focusing on green hydrogen supply and circular economy practices to improve FC sustainability.
No more items...