Switzerland
First Solar Hydrogen Storage in a Private Building in Western Switzerland: Building energy Analysis and Schematic Design
Sep 2019
Publication
Self-sufficiency of buildings with carbon emission reduction can be obtained thanks to the introduction of Photovoltaics systems coupled with Hydrogen seasonal storage. To be self-sufficient over the year the electricity converted to hydrogen by electrolysis during the sunny season can be re-used with the help of fuel cells during the winter season. This article is dealing with the dimensioning methodology of a solar PV hydrogen-electrochemical system for self-sufficient buildings. We introduce the case study of the first private building in western Switzerland that will be equipped with solar hydrogen storage. Calculation results of the dimensioning of the PV system with storage will be presented. The life cycle assessment and the calculations of the environmental indicators GWP and CED will be introduced.
Combined Hydrogen Production and Electricity Storage using a Vanadium Manganese Redox Dual-flow Battery
Aug 2021
Publication
A redox dual-flow battery is distinct from a traditional redox flow battery (RFB) in that the former includes a secondary energy platform in which the pre-charged electrolytes can be discharged in external catalytic reactors through decoupled redox-mediated hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The concept offers several advantages over conventional electrolysis in terms of safety durability modularity and purity. In this work we demonstrate a vanadium-manganese redox-flow battery in which Mn3+/Mn2+ and V3+/V2+ respectively mediate the OER and the HER in Mo2C-based and RuO2-based catalysts. The flow battery demonstrates an average energy efficiency of 68% at a current density of 50 mA ⋅ cm−2 (cell voltage = 1.92 V) and a relative energy density 45% higher than the conventional all-vanadium RFB. Both electrolytes are spontaneously discharged through redox-mediated HER and OER with a faradic efficiency close to 100%.
Analyzing the Competitiveness of Low-carbon Drive-technologies in Road-freight: A Total Cost of Ownership Analysis in Europe
Nov 2021
Publication
In light of the Paris Agreement road-freight represents a critically difficult-to-abate sector. In order to meet the ambitious European transport sector emissions reduction targets a rapid transition to zero-carbon road-freight is necessary. However limited policy assessments indicate where and how to appropriately intervene in this sector. To support policy-makers in accelerating the zero-carbon road-freight transition this paper examines the relative cost competitiveness between commercial vehicles of varying alternative drive-technologies through a total cost of ownership (TCO) assessment. We identify key parameters that when targeted enable the uptake of these more sustainable niche technologies. The assessment is based on a newly compiled database of cost parameters which were triangulated through expert interviews. The results show that cost competitiveness for low- or zero-emission niche technologies in certain application segments and European countries is exhibited already today. In particular we find battery electric vehicles to show great promise in the light- and medium-duty segments but also in the heavy-duty long-haul segments in countries that have enacted targeted policy measures. Three TCO parameters drive this competitiveness: tolls fuel costs and CAPEX subsidies. Based on our analysis we propose that policy-makers target OPEX before CAPEX parameters as well utilize a mix of policy interventions to ensure greater reach increased efficiency and increased policy flexibility.
Moving Toward the Low-carbon Hydrogen Economy: Experiences and Key Learnings from National Case Studies
Sep 2022
Publication
The urgency to achieve net-zero carbon dioxide (CO2) emissions by 2050 as first presented by the IPCC special report on 1.5°C Global Warming has spurred renewed interest in hydrogen to complement electrification for widespread decarbonization of the economy. We present reflections on estimates of future hydrogen demand optimization of infrastructure for hydrogen production transport and storage development of viable business cases and environmental impact evaluations using life cycle assessments. We highlight challenges and opportunities that are common across studies of the business cases for hydrogen in Germany the UK the Netherlands Switzerland and Norway. The use of hydrogen in the industrial sector is an important driver and could incentivise large-scale hydrogen value chains. In the long-term hydrogen becomes important also for the transport sector. Hydrogen production from natural gas with capture and permanent storage of the produced CO2 (CCS) enables large-scale hydrogen production in the intermediate future and is complementary to hydrogen from renewable power. Furthermore timely establishment of hydrogen and CO2 infrastructures serves as an anchor to support the deployment of carbon dioxide removal technologies such as direct air carbon capture and storage (DACCS) and biohydrogen production with CCS. Significant public support is needed to ensure coordinated planning governance and the establishment of supportive regulatory frameworks which foster the growth of hydrogen markets.
Planetary Boundaries Assessment of Deep Decarbonisation Options for Building Heating in the European Union
Jan 2023
Publication
Building heating is one of the sectors for which multiple decarbonisation options exist and current geopolitical tensions provide urgency to design adequate regional policies. Heat pumps and hydrogen boilers alongside alternative district heating systems are the most promising alternatives. Although a host of city or country-level studies exist it remains controversial what role hydrogen should play for building heating in the European Union compared with electrification and how blue and green hydrogen differ in terms of costs and environmental impacts. This works assesses the optimal technology mix for staying within planetary boundaries and the influence of international cooperation and political restrictions. To perform the analysis a bottom-up optimisation model was developed incorporating life cycle assessment constraints and covering production storage transport of energy and carbon dioxide as well as grid and non-grid connected end-users of heat. It was found that a building heating system within planetary boundaries is feasible through large-scale electrification via heat pumps although at a higher cost than the current system with abatement costs of around 200 €/ton CO2. Increasing interconnector capacity or onshore wind energy is found to be vital to staying within boundaries. A strong trade-off for hydrogen was identified with blue hydrogen being cost-competitive but vastly unsustainable (when applied to heating) and green hydrogen being 2–3 times more expensive than electrification while still transgressing several planetary boundaries. The insights from this work indicate that heat pumps and renewable electricity should be prioritised over hydrogen-based heating in most cases and grid-stability and storage aspects explored further while revealing a need for policy instruments to mitigate increased costs for consumers.
Solar Fuel Processing: Comparative Mini-review on Research, Technology Development, and Scaling
Oct 2022
Publication
Solar energy provides an unprecedented potential as a renewable and sustainable energy resource and will substantially reshape our future energy economy. It is not only useful in producing electricity but also (hightemperature) heat and fuel both required for non-electrifiable energy services. Fuels are particularly valuable as they are energy dense and storable and they can also act as a feedstock for the chemical industry. Technical pathways for the processing of solar fuels include thermal pathways (e.g. solar thermochemistry) photo pathways (e.g. photoelectrochemistry) and combinations thereof. A review of theoretical limits indicates that all technical solar fuel processing pathways have the potential for competitive solar-to-fuel efficiencies (>10 %) but require very different operating conditions (e.g. temperature levels or oxygen partial pressures) making them complementary and highly versatile for process integration. Progress in photoelectrochemical devices and solar thermochemical reactors over the last 50 + years are summarized showing encouraging trends in terms of performance technological viability and scaling.
Perspective on the Hydrogen Economy as a Pathway to Reach Net-zero CO2 Emissions in Europe
Jan 2022
Publication
The envisioned role of hydrogen in the energy transition – or the concept of a hydrogen economy – has varied through the years. In the past hydrogen was mainly considered a clean fuel for cars and/or electricity production; but the current renewed interest stems from the versatility of hydrogen in aiding the transition to CO2 neutrality where the capability to tackle emissions from distributed applications and complex industrial processes is of paramount importance. However the hydrogen economy will not materialise without strong political support and robust infrastructure design. Hydrogen deployment needs to address multiple barriers at once including technology development for hydrogen production and conversion infrastructure co-creation policy market design and business model development. In light of these challenges we have brought together a group of hydrogen researchers who study the multiple interconnected disciplines to offer a perspective on what is needed to deploy the hydrogen economy as part of the drive towards net-zero-CO2 societies. We do this by analysing (i) hydrogen end-use technologies and applications (ii) hydrogen production methods (iii) hydrogen transport and storage networks (iv) legal and regulatory aspects and (v) business models. For each of these we provide key take home messages ranging from the current status to the outlook and needs for further research. Overall we provide the reader with a thorough understanding of the elements in the hydrogen economy state of play and gaps to be filled.
Conditions for Profitable Operation of P2X Energy Hubs to Meet Local Demand Under Energy Market Access
Feb 2023
Publication
This paper analyzes the operation of an energy hub on a community level with an integrated P2X facility and with access to energy markets. In our case P2X allows converting power to hydrogen heat methane or back to power. We consider the energy hub as a large prosumer who can be both a producer and consumer in the markets with the novelty that P2X technology is available. We investigate how such a P2X energy hub trades optimally in the electricity market and satisfies local energy demand under the assumption of a long-term strong climate scenario in year 2050. For numerical analysis a case study of a mountain village in Switzerland is used. One of the main contributions of this paper is to quantify key conditions for profitable operations of such a P2X energy hub. In particular the analysis includes impacts of influencing factors on profits and operational patterns in terms of different degrees of self-sufficiency and different availability of local renewable resources. Moreover the access to real-time wholesale market electricity price signals and a future retail hydrogen market is assessed. The key factors for the successful operation of a P2X energy hub are identified to be sufficient local renewable resources and access to a retail market of hydrogen. The results also show that the P2X operation leads to an increased deployment of local renewables especially in the case of low initial deployment; on the other hand seasonal storage plays a subordinated role. Additionally P2X lowers for the community the wholesale electricity market trading volumes.
Smart Power-to-gas Deployment Strategies Informed by Spatially Explicit Cost and Value Models
Oct 2022
Publication
Green hydrogen allows coupling renewable electricity to hard-to-decarbonize sectors such as long-distance transport and carbon-intensive industries in order to achieve net zero emissions. Evaluating the cost and value of power-to-gas is a major challenge owing to the spatial distribution and temporal variability of renewable electricity CO2 and energy demand. Here we propose a method based on geographic information system (GIS) and techno-economic modeling to: (i) compare the levelized cost and levelized value of power-to-gas across locations; (ii) identify potential hotspots for their future implementation in Switzerland; and (iii) set cost improvement targets as well as smart deployment strategies. Our method accounts for the spatial and temporal (both hourly and seasonal) availability of renewable electricity and CO2 sources as well as the presence of gas infrastructure heating networks oxygen and gas demand centers. We find that only green hydrogen plants connected directly to run-of-river hydropower plants are currently profitable in Switzerland (with NPV per CAPEX ranging between 2.3-5.6). However considering technological progress by 2050 a few green hydrogen plants deployed in the demand centers and powered by rooftop PV electricity will also become economically attractive. Moreover a few synthetic methane plants connected to run-of-river hydropower plants currently show slight profitability (NPV per CAPEX reaching values up to 1.3) and in 2050 (NPV per CAPEX up to 3.1) whereas those connected to rooftop PV will remain uneconomical even in 2050. Based on our findings we devise a long-term roadmap for policy makers and project developers to plan future green hydrogen projects. The proposed methodology which is applied to Switzerland can be extended to other countries.
Increasing the Energy Efficiency of Gas Boosters for Hydrogen Storage and for Refueling Stations
Feb 2023
Publication
A new electrically driven gas booster is described as an alternative to the classical air-driven gas boosters known for their poor energetic efficiency. These boosters are used in small scale Hydrogen storage facilities and in refueling stations for Hydrogen vehicles. In such applications the overall energy count is of significance and must include the efficiency of the compression stage. The proposed system uses an electric motor instead of the pneumatic actuator and increases the total efficiency of the compression process. Two mechanical principles are studied for the transformation of the rotational motion of the motor to the linear displacement of the compressor pistons. The strongly fluctuating power of the compressor is smoothed by an active capacitive auxiliary storage device connected to the DC circuit of the power converter. The proposed system has been verified by numeric simulation including the thermodynamic phenomena the kinetics of the new compressor drive and the the operation of the circuits of the power smoothing system.
The Role of Hydrogen for Deep Decarbonization of Energy Systems: A Chilean Case Study
Mar 2023
Publication
In this paper we implement a long-term multi-sectoral energy planning model to evaluate the role of green hydrogen in the energy mix of Chile a country with a high renewable potential under stringent emission reduction objectives in 2050. Our results show that green hydrogen is a cost-effective and environmentally friendly route especially for hard-to-abate sectors such as interprovincial and freight transport. They also suggest a strong synergy of hydrogen with electricity generation from renewable sources. Our numerical simulations show that Chile should (i) start immediately to develop hydrogen production through electrolyzers all along the country (ii) keep investing in wind and solar generation capacities ensuring a low cost hydrogen production and reinforce the power transmission grid to allow nodal hydrogen production (iii) foster the use of electric mobility for cars and local buses and of hydrogen for long-haul trucks and interprovincial buses and (iv) develop seasonal hydrogen storage and hydrogen cells to be exploited for electricity supply especially for the most stringent emission reduction objectives.
Polymer Electrolyte Membrane Electrolyzer and Fuel Cell System Characterization for Power System Frequency Control
Mar 2022
Publication
This work focuses on tests for control reserve of a novel Power-to-Gas-to-Power platform based on proton exchange membrane technologies and on pure oxygen instead of air in the re-electrification process. The technologies are intended as a further option to stabilize the power system therefore helping integrating renewable energy into the power system. The tests are based on the pre-qualification tests used by Swissgrid but are not identical in order to capture the maximum dynamics by the plants. The main characteristics identified are the ramping capabilities of ±8% per unit per second for the electrolyzer system and ±33% per unit per second for the fuel cell system. The ramping capabilities are mainly limited by the underlying processes of polymer electrolyte membrane technologies. Additionally the current and projected round-trip efficiencies for Power-to-Gas-to-Power of 39% in 2025 and 48% in 2040 are derived. Furthermore during the successful tests the usage of oxygen in the present Power-to-Gas and Gas-to-Power processes and its influence on the dynamics and the round-trip efficiency was assessed. In consequence fundamental data on the efficiency and the dynamics of the Power-to-Gas-to-Power technologies is presented. This data can serve as basis for prospective assessments on the suitability of the technologies investigated for frequency control in power systems.
Aluminium Redox Cycle in Comparison to Pressurized Hydrogen for the Energy Supply of Multi-family Houses
Nov 2022
Publication
Power-to-X technologies that convert renewable electricity to chemically stored energy in “X” may provide a gaseous liquid or solid fuel that can be used in winter to provide both heat and electricity and thus replace fossil fuels that are currently used in many countries with cold winters. This contribution compares two options for power-to-X technologies for providing heat and electricity supply of buildings with high solar photovoltaic coverage at times of low solar availability. The option “compressed hydrogen” is based on water electrolysis that produces hydrogen on-site. This hydrogen is subsequently compressed and stored at high pressure (350 bar) for use in winter by a fuel cell. The option “aluminium redox-cycle” includes an inert electrode high temperature electrolysis process that is carried out at industrial scale. Produced aluminium is subseqeuntly transported to the site of use and converted to hydrogen and heat – and finally to electricity and heat - by aluminium-water reaction in combination with a fuel cell. Results of cost and LCA analysis show that the overall energetic efficiency of the compressed hydrogen process is slightly higher than for the aluminium redox cycle. However the aluminium redox-cycles needs far less on-site storage volume and is likely to become available at lower investment cost for the end user. Total annual cost of ownership and global warming potential of the two options are quite similar.
Expert Perceptions of Game-changing Innovations towards Net Zero
Dec 2022
Publication
Current technological improvements are yet to put the world on track to net-zero which will require the uptake of transformative low-carbon innovations to supplement mitigation efforts. However the role of such innovations is not yet fully understood; some of these ‘miracles’ are considered indispensable to Paris Agreement-compliant mitigation but their limitations availability and potential remain a source of debate. We evaluate such potentially game-changing innovations from the experts’ perspective aiming to support the design of realistic decarbonisation scenarios and better-informed net-zero policy strategies. In a worldwide survey 260 climate and energy experts assessed transformative innovations against their mitigation potential at-scale availability and/or widescale adoption and risk of delayed diffusion. Hierarchical clustering and multi-criteria decision-making revealed differences in perceptions of core technological innovations with next generation energy storage alternative building materials iron-ore electrolysis and hydrogen in steelmaking emerging as top priorities. Instead technologies highly represented in well-below-2◦C scenarios seemingly feature considerable and impactful delays hinting at the need to re-evaluate their role in future pathways. Experts’ assessments appear to converge more on the potential role of other disruptive innovations including lifestyle shifts and alternative economic models indicating the importance of scenarios including non-technological and demand-side innovations. To provide insights for expert elicitation processes we finally note caveats related to the level of representativeness among the 260 engaged experts the level of their expertise that may have varied across the examined innovations and the potential for subjective interpretation to which the employed linguistic scales may be prone to.
Non-Precious Electrodes for Practical Alkaline Water Electrolysis
Apr 2019
Publication
Water electrolysis is a promising approach to hydrogen production from renewable energy sources. Alkaline water electrolyzers allow using non-noble and low-cost materials. An analysis of common assumptions and experimental conditions (low concentrations low temperature low current densities and short-term experiments) found in the literature is reported. The steps to estimate the reaction overpotentials for hydrogen and oxygen reactions are reported and discussed. The results of some of the most investigated electrocatalysts namely from the iron group elements (iron nickel and cobalt) and chromium are reported. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The experimental work is done involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at temperatures between 30 and 100 ◦C which are closer to industrial applications than what is usually found in literature. Stable cell components and a good performance was achieved using Raney nickel as a cathode and stainless steel 316L as an anode by means of a monopolar cell at 75 ◦C which ran for one month at 300 mA cm−2 . Finally the proposed catalysts showed a total kinetic overpotential of about 550 mV at 75 ◦C and 1 A cm−2.
Economically Viable Large-scale Hydrogen Liquefaction
Mar 2016
Publication
The liquid hydrogen demand particularly driven by clean energy applications will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection a dimensioning of key equipment for large scale liquefiers such as turbines and compressors as well as heat exchangers must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction e.g. fluid properties ortho-para hydrogen conversion and coldbox configuration must be analysed in detail. This paper provides an overview on the approach challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.
Materials for Hydrogen Storage
Aug 2003
Publication
Hydrogen storage is a materials science challenge because for all six storage methods currently being investigated materials with either a strong interaction with hydrogen or without any reaction are needed. Besides conventional storage methods i.e. high pressure gas cylinders and liquid hydrogen the physisorption of hydrogen on materials with a high specific surface area hydrogen intercalation in metals and complex hydrides and storage of hydrogen based on metals and water are reviewed.
Seasonal Energy Storage for Zero-emissions Multi-energy Systems Via Underground Hydrogen Storage
Jan 2020
Publication
The deployment of diverse energy storage technologies with the combination of daily weekly and seasonal storage dynamics allows for the reduction of carbon dioxide (CO2) emissions per unit energy provided. In particular the production storage and re-utilization of hydrogen starting from renewable energy has proven to be one of the most promising solutions for offsetting seasonal mismatch between energy generation and consumption. A realistic possibility for large-scale hydrogen storage suitable for long-term storage dynamics is presented by salt caverns. In this contribution we provide a framework for modelling underground hydrogen storage with a focus on salt caverns and we evaluate its potential for reducing the CO2 emissions within an integrated energy systems context. To this end we develop a first-principle model which accounts for the transport phenomena within the rock and describes the dynamics of the stored energy when injecting and withdrawing hydrogen. Then we derive a linear reduced order model that can be used for mixed-integer linear program optimization while retaining an accurate description of the storage dynamics under a variety of operating conditions. Using this new framework we determine the minimum-emissions design and operation of a multi-energy system with H2 storage. Ultimately we assess the potential of hydrogen storage for reducing CO2 emissions when different capacities for renewable energy production and energy storage are available mapping emissions regions on a plane defined by storage capacity and renewable generation. We extend the analysis for solar- and wind-based energy generation and for different energy demands representing typical profiles of electrical and thermal demands and different CO2 emissions associated with the electric grid.
A Cost Estimation for CO2 Reduction and Reuse by Methanation from Cement Industry Sources in Switzerland
Feb 2018
Publication
The Swiss government has signed the Paris Climate Agreement and various measures need to be implemented in order to reach the target of a 50% reduction in CO2 emissions in Switzerland by 2030 compared with the value for 1990. Considering the fact that the production of cement in Switzerland accounts around 2.5 million ton for CO2 emissions of which corresponds to roughly 7% of the country's total CO2 emissions the following article examines how this amount could be put to meaningful use in order to create a new value-added chain through CO2 methanation and thus reduce the consumption and import of fossil fuels in Switzerland. With power-to-gas technology this CO2 along with regenerative hydrogen from photovoltaics can be converted into methane which can then be fed into the existing natural-gas grid. This economic case study shows a cost prediction for conversion of all the CO2 from the cement industry into methane by using the technologies available today in order to replacing fossil methane imports.
Evaluation of Sorbents for High Temperature Removal of Tars, Hydrogen Sulphide, Hydrogen Chloride and Ammonia from Biomass-derived Syngas by Using Aspen Plus
Jan 2020
Publication
Biomass gasification is a promising technology to produce secondary fuels or heat and power offering considerable advantages over fossil fuels. An important aspect in the usage of producer gas is the removal of harmful contaminants from the raw syngas. Thus the object of this study is the development of a simulation model for a gasifier including gas clean-up for which a fluidized-bed gasifier for biomass-derived syngas production was considered based on a quasi-equilibrium approach through Gibbs free energy minimisation and including an innovative hot gas cleaning constituted by a combination of catalyst sorbents inside the gasification reactor catalysts in the freeboard and subsequent sorbent reactors by using Aspen Plus software. The gas cleaning chain simulates the raw syngas clean-up for several organic and inorganic contaminants i.e. toluene benzene naphthalene hydrogen sulphide hydrogen chloride and ammonia. The tar and inorganic contaminants final values achieved are under 1 g/Nm3 and 1 ppm respectively.
A Manganese Hydride Molecular Sieve for Practical Hydrogen Storage Under Ambient Conditions
Dec 2018
Publication
A viable hydrogen economy has thus far been hampered by the lack of an inexpensive and convenient hydrogen storage solution meeting all requirements especially in the areas of long hauls and delivery infrastructure. Current approaches require high pressure and/or complex heat management systems to achieve acceptable storage densities. Herein we present a manganese hydride molecular sieve that can be readily synthesized from inexpensive precursors and demonstrates a reversible excess adsorption performance of 10.5 wt% and 197 kgH2 m-3 at 120 bar at ambient temperature with no loss of activity after 54 cycles. Inelastic neutron scattering and computational studies confirm Kubas binding as the principal mechanism. The thermodynamically neutral adsorption process allows for a simple system without the need for heat management using moderate pressure as a toggle. A storage material with these properties will allow the DOE system targets for storage and delivery to be achieved providing a practical alternative to incumbents such as 700 bar systems which generally provide volumetric storage values of 40 kgH2 m-3 or less while retaining advantages over batteries such as fill time and energy density. Reasonable estimates for production costs and loss of performance due to system implementation project total energy storage costs roughly 5 times cheaper than those for 700 bar tanks potentially opening doors for increased adoption of hydrogen as an energy vector.
Metal Hydroborates: From Hydrogen Stores to Solid Electrolyte
Nov 2021
Publication
The last twenty years of an intense research on metal hydroborates as solid hydrogen stores and solid electrolytes are reviewed. It is shown that from the most promising application in hydrogen storage due to their high gravimetric and volumetric capacities the focus has moved to solid electrolytes due to high cation mobility in disordered structures with rotating or tumbling anions-hydroborate clusters. Various strategies of overcoming the strong covalent bonding of hydrogen in hydroborates for hydrogen storage and disordering their structures at room temperature for solid electrolytes are discussed. The important role of crystal chemistry and crystallography knowledge in material design can be read in the cited literature.
Heat Transfer Analysis of High Pressure Hydrogen Tank Fillings
Jun 2022
Publication
Fast fillings of hydrogen vehicles require proper control of the temperature to ensure the integrity of the storage tanks. This study presents an analysis of heat transfer during filling of a hydrogen tank. A conjugate heat transfer based on energy balance is introduced. The numerical model is validated against fast filling experiments of hydrogen in a Type IV tank by comparing the gas temperature evolution. The impact of filling parameters such as initial temperature inlet nozzle diameter and filling time is then assessed. For the considered Type IV tank the results show that both a higher and lower tank shell thermal conductivity results in lower inner wall peak temperatures. The presented model provides an analytical description of the temperature evolution in the gas and in the tank shell and is thus a useful tool to explore a broad range of parameters e.g. to determine new hydrogen filling protocols.
Life Cycle Assessment of Substitute Natural Gas Production from Biomass and Electrolytic Hydrogen
Feb 2021
Publication
The synthesis of a Substitute Natural Gas (SNG) that is compatible with the gas grid composition requirements by using surplus electricity from renewable energy sources looks a favourable solution to store large quantities of electricity and to decarbonise the gas grid network while maintaining the same infrastructure. The most promising layouts for SNG production and the conditions under which SNG synthesis reduces the environmental impacts if compared to its fossil alternative is still largely untapped. In this work six different layouts for the production of SNG and electricity from biomass and fluctuating electricity are compared from the environmental point of view by means of Life Cycle Assessment (LCA) methodology. Global Warming Potential (GWP) Cumulative Energy Demand (CED) and Acidification Potential (AP) are selected as impact indicators for this analysis. The influence of key LCA methodological aspects on the conclusions is also explored. In particular two different functional units are chosen: 1 kg of SNG produced and 1 MJ of output energy (SNG and electricity). Furthermore different approaches dealing with co-production of electricity are also applied. The results show that the layout based on hydrogasification has the lowest impacts on all the considered cases apart from the GWP and the CED with SNG mass as the functional unit and the avoided burden approach. Finally the selection of the multifunctionality approach is found to have a significant influence on technology ranking.
Carbon Capture and Storage (CCS): The Way Forward
Mar 2018
Publication
Mai Bui,
Claire S. Adjiman,
André Bardow,
Edward J. Anthony,
Andy Boston,
Solomon Brown,
Paul Fennell,
Sabine Fuss,
Amparo Galindo,
Leigh A. Hackett,
Jason P. Hallett,
Howard J. Herzog,
George Jackson,
Jasmin Kemper,
Samuel Krevor,
Geoffrey C. Maitland,
Michael Matuszewski,
Ian Metcalfe,
Camille Petit,
Graeme Puxty,
Jeffrey Reimer,
David M. Reiner,
Edward S. Rubin,
Stuart A. Scott,
Nilay Shah,
Berend Smit,
J. P. Martin Trusler,
Paul Webley,
Jennifer Wilcox and
Niall Mac Dowell
Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets delivering low carbon heat and power decarbonising industry and more recently its ability to facilitate the net removal of CO2 from the atmosphere. However despite this broad consensus and its technical maturity CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus in this paper we review the current state-of-the-art of CO2 capture transport utilisation and storage from a multi-scale perspective moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS) and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.
Potential for Hydrogen Production from Sustainable Biomass with Carbon Capture and Storage
Jan 2022
Publication
Low-carbon hydrogen is an essential element in the transition to net-zero emissions by 2050. Hydrogen production from biomass is a promising bio-energy with carbon capture and storage (BECCS) scheme that could produce low-carbon hydrogen and generate the carbon dioxide removal (CDR) envisioned to be required to offset hard-to-abate emissions. Here we design a BECCS supply chain for hydrogen production from biomass with carbon capture and storage and quantify at high spatial resolution the technical potential for hydrogen production and CDR in Europe. We consider sustainable biomass feedstocks that have minimal impacts on food security and biodiversity namely agricultural residues and waste. We find that this BECCS supply chain can produce up to 12.5 Mtons of H2 per year (currently ~10 Mtons of H2 per year are used in Europe) and remove up to 133 Mtons CO2 per year from the atmosphere (or 3% of European total greenhouse gas emissions). We then perform a geospatial analysis to quantify transportation distances between where biomass feedstocks are located and potential hydrogen users and find that 20% of hydrogen potential is located within 25 km from hard-toelectrify industries. We conclude that BECCS supply chains for hydrogen production from biomass represent an overlooked near-term opportunity to generate carbon dioxide removal and low-carbon hydrogen.
Quantification of Hydrogen in Nanostructured Hydrogenated Passivating Contacts for Silicon Photovoltaics Combining SIMS-APT-TEM: A Multiscale Correlative Approach
Mar 2021
Publication
Multiscale characterization of the hydrogenation process of silicon solar cell contacts based on c-Si/SiOx/nc-SiCx(p) has been performed by combining dynamic secondary ion mass-spectrometry (D-SIMS) atom probe tomography (APT) and transmission electron microscopy (TEM). These contacts are formed by high-temperature firing which triggers the crystallization of SiCx followed by a hydrogenation process to passivate remaining interfacial defects. Due to the difficulty of characterizing hydrogen at the nm-scale the exact hydrogenation mechanisms have remained elusive. Using a correlative TEM-SIMS-APT analysis we are able to locate hydrogen trap sites and quantify the hydrogen content. Deuterium (D) a heavier isotope of hydrogen is used to distinguish hydrogen introduced during hydrogenation from its background signal. D-SIMS is used due to its high sensitivity to get an accurate deuterium-to-hydrogen ratio which is then used to correct deuterium profiles extracted from APT reconstructions. This new methodology to quantify the concentration of trapped hydrogen in nm-scale structures sheds new insights on hydrogen distribution in technologically important photovoltaic materials.
Uncovering the True Cost of Hydrogen Production Routes Using Life Cycle Monetisation
Oct 2020
Publication
Hydrogen has been identified as a potential energy vector to decarbonise the transport and chemical sectors and achieve global greenhouse gas reduction targets. Despite ongoing efforts hydrogen technologies are often assessed focusing on their global warming potential while overlooking other impacts or at most including additional metrics that are not easily interpretable. Herein a wide range of alternative technologies have been assessed to determine the total cost of hydrogen production by coupling life-cycle assessments with an economic evaluation of the environmental externalities of production. By including monetised values of environmental impacts on human health ecosystem quality and resources on top of the levelised cost of hydrogen production an estimation of the “real” total cost of hydrogen was obtained to transparently rank the alternative technologies. The study herein covers steam methane reforming (SMR) coal and biomass gasification methane pyrolysis and electrolysis from renewable and nuclear technologies. Monetised externalities are found to represent a significant percentage of the total cost ultimately altering the standard ranking of technologies. SMR coupled with carbon capture and storage emerges as the cheapest option followed by methane pyrolysis and water electrolysis from wind and nuclear. The obtained results identify the “real” ranges for the cost of hydrogen compared to SMR (business as usual) by including environmental externalities thereby helping to pinpoint critical barriers for emerging and competing technologies to SMR.
Direct Numerical Simulation of Hydrogen Combustion at Auto-ignitive Conditions Ignition, Stability and Turbulent Reaction-front Velocity
Mar 2021
Publication
Direct Numerical Simulations (DNS) are performed to investigate the process of spontaneous ignition of hydrogen flames at laminar turbulent adiabatic and non-adiabatic conditions. Mixtures of hydrogen and vitiated air at temperatures representing gas-turbine reheat combustion are considered. Adiabatic spontaneous ignition processes are investigated first providing a quantitative characterization of stable and unstable flames. Results indicate that in hydrogen reheat combustion compressibility effects play a key role in flame stability and that unstable ignition and combustion are consistently encountered for reactant temperatures close to the mixture’s characteristic crossover temperature. Furthermore it is also found that the characterization of the adiabatic processes is also valid in the presence of non-adiabaticity due to wall heat-loss. Finally a quantitative characterization of the instantaneous fuel consumption rate within the reaction front is obtained and of its ability at auto-ignitive conditions to advance against the approaching turbulent flow of the reactants for a range of different turbulence intensities temperatures and pressure levels.
Decarbonizing Copper Production by Power-to-Hydrogen A Techno-Economic Analysis
Apr 2021
Publication
Electrifying energy-intensive processes is currently intensively explored to cut greenhouse gas (GHG) emissions through renewable electricity. Electrification is particularly challenging if fossil resources are not only used for energy supply but also as feedstock. Copper production is such an energy-intensive process consuming large quantities of fossil fuels both as reducing agent and as energy supply.
Here we explore the techno-economic potential of Power-to-Hydrogen to decarbonize copper production. To determine the minimal cost of an on-site retrofit with Power-to-Hydrogen technology we formulate and solve a mixed-integer linear program for the integrated system. Under current techno-economic parameters for Germany the resulting direct CO2 abatement cost is 201 EUR/t CO2-eq for Power-to-Hydrogen in copper production. On-site utilization of the electrolysis by-product oxygen has a substantial economic benefit. While the abatement cost vastly exceeds current European emission certificate prices a sensitivity analysis shows that projected future developments in Power-to-Hydrogen technologies can greatly reduce the direct CO2 abatement cost to 54 EUR/t CO2-eq. An analysis of the total GHG emissions shows that decarbonization through Power-to-Hydrogen reduces the global GHG emissions only if the emission factor of the electricity supply lies below 160 g CO2-eq/kWhel.
The results suggest that decarbonization of copper production by Power-to-Hydrogen could become economically and environmentally beneficial over the next decades due to cheaper and more efficient Power-to-Hydrogen technology rising GHG emission certificate prices and further decarbonization of the electricity supply.
Here we explore the techno-economic potential of Power-to-Hydrogen to decarbonize copper production. To determine the minimal cost of an on-site retrofit with Power-to-Hydrogen technology we formulate and solve a mixed-integer linear program for the integrated system. Under current techno-economic parameters for Germany the resulting direct CO2 abatement cost is 201 EUR/t CO2-eq for Power-to-Hydrogen in copper production. On-site utilization of the electrolysis by-product oxygen has a substantial economic benefit. While the abatement cost vastly exceeds current European emission certificate prices a sensitivity analysis shows that projected future developments in Power-to-Hydrogen technologies can greatly reduce the direct CO2 abatement cost to 54 EUR/t CO2-eq. An analysis of the total GHG emissions shows that decarbonization through Power-to-Hydrogen reduces the global GHG emissions only if the emission factor of the electricity supply lies below 160 g CO2-eq/kWhel.
The results suggest that decarbonization of copper production by Power-to-Hydrogen could become economically and environmentally beneficial over the next decades due to cheaper and more efficient Power-to-Hydrogen technology rising GHG emission certificate prices and further decarbonization of the electricity supply.
Optimal Hydrogen Production in a Wind-dominated Zero-emission Energy System
May 2021
Publication
The role of hydrogen in future energy systems is widely acknowledged: from fuel for difficult-to-decarbonize applications to feedstock for chemicals synthesis to energy storage for high penetration of undispatchable renewable electricity. While several literature studies investigate such energy systems the details of how electrolysers and renewable technologies optimally behave and interact remain an open question. With this work we study the interplay between (i) renewable electricity generation through wind and solar (ii) electricity storage in batteries (iii) electricity storage via Power-to-H2 and (iv) hydrogen commodity demand. We do so by designing a cost-optimal zero-emission energy system and use the Netherlands as a case study in a mixed integer linear model with hourly resolution for a time horizon of one year. To account for the significant role of wind we also provide an elaborate approach to model broad portfolios of wind turbines. The results show that if electrolyzers can operate flexibly batteries and power-to-H2-to-power are complementary with the latter using renewable power peaks and the former using lower renewable power outputs. If the operating modes of the power-to-H2-to-power system are limited - artificially or technically - the competitive advantage over batteries decreases. The preference of electrolyzers for power peaks also leads to an increase in renewable energy utilization for increased levels of operation flexibility highlighting the importance of capturing this feature both from a technical and a modeling perspective. When adding a commodity hydrogen demand the amount of hydrogen converted to electricity decreases hence decreasing its role as electricity storage medium.
Spin Pinning Effect to Reconstructed Oxyhydroxide Layer on Ferromagnetic Oxides for Enhanced Water Oxidation
Jun 2021
Publication
Producing hydrogen by water electrolysis suffers from the kinetic barriers in the oxygen evolution reaction (OER) that limits the overall efficiency. With spin-dependent kinetics in OER to manipulate the spin ordering of ferromagnetic OER catalysts (e.g. by magnetization) can reduce the kinetic barrier. However most active OER catalysts are not ferromagnetic which makes the spin manipulation challenging. In this work we report a strategy with spin pinning effect to make the spins in paramagnetic oxyhydroxides more aligned for higher intrinsic OER activity. The spin pinning effect is established in oxideFM/oxyhydroxide interface which is realized by a controlled surface reconstruction of ferromagnetic oxides. Under spin pinning simple magnetization further increases the spin alignment and thus the OER activity which validates the spin effect in rate-limiting OER step. The spin polarization in OER highly relies on oxyl radicals (O∙) created by 1st dehydrogenation to reduce the barrier for subsequent O-O coupling.
Electrochemical Conversion Technologies for Optimal Design of Decentralized Multi-energy Systems: Modeling Framework and Technology Assessment
Apr 2018
Publication
The design and operation of integrated multi-energy systems require models that adequately describe the behavior of conversion and storage technologies. Typically linear conversion performance or fixed data from technology manufacturers are employed especially for new or advanced technologies. This contribution provides a new modeling framework for electrochemical devices that bridges first-principles models to their simplified implementation in the optimization routine. First thermodynamic models are implemented to determine the on/off-design performance and dynamic behavior of different types of fuel cells and of electrolyzers. Then as such nonlinear models are intractable for use in the optimization of integrated systems different linear approximations are developed. The proposed strategies for the synthesis of reduced order models are compared to assess the impact of modeling approximations on the optimal design of multi-energy systems including fuel cells and electrolyzers. This allows to determine the most suitable level of detail for modeling the underlying electrochemical technologies from an integrated system perspective. It is found that the approximation methodology affects both the design and operation of the system with a significant effect on system costs and violation of the thermal energy demand. Finally the optimization and technology modeling framework is exploited to determine guidelines for the installation of the most suitable fuel cell technology in decentralized multi-energy systems. We show how the installation costs of PEMFC SOFC and MCFC their electrical and thermal efficiencies their conversion dynamics and the electricity price affect the system design and technology selection.
Enabling Low-carbon Hydrogen Supply Chains Through Use of Biomass and Carbon Capture and Storage: A Swiss Case Study
Jul 2020
Publication
This study investigates the optimal design of low-carbon hydrogen supply chains on a national scale. We consider hydrogen production based on several feedstocks and energy sources namely water with electricity natural gas and biomass. When using natural gas we couple hydrogen production with carbon capture and storage. The design of the hydrogen biomass and carbon dioxide (CO2 ) infrastructure is performed by solving an optimization problem that determines the optimal selection size and location of the hydrogen production technologies and the optimal structure of the hydrogen biomass and CO2 O2 networks. First we investigate the rationale behind the optimal design of low-carbon hydrogen supply chains by referring to an idealized system configuration and by performing a parametric analysis of the most relevant design parameters of the supply chains such as biomass availability. This allows drawing general conclusions independent of any specific geographic features about the minimum-cost and minimum-emissions system designs and network structures. Moreover we analyze the Swiss case study to derive specific guidelines concerning the design of hydrogen supply chains deploying carbon capture and storage. We assess the impact of relevant design parameters such as location of CO2 storage facilities techno-economic features of CO2 capture technologies and network losses on the optimal supply chain design and on the competition between the hydrogen and CO2 networks. Findings highlight the fundamental role of biomass (when available) and of carbon capture and storage for decarbonizing hydrogen supply chains while transitioning to a wider deployment of renewable energy sources.
Life Cycle Environmental and Cost Comparison of Current and Future Passenger Cars under Different Energy Scenarios
Apr 2020
Publication
In this analysis life cycle environmental burdens and total costs of ownership (TCO) of current (2017) and future (2040) passenger cars with different powertrain configurations are compared. For all vehicle configurations probability distributions are defined for all performance parameters. Using these a Monte Carlo based global sensitivity analysis is performed to determine the input parameters that contribute most to overall variability of results. To capture the systematic effects of the energy transition future electricity scenarios are deeply integrated into the ecoinvent life cycle assessment background database. With this integration not only the way how future electric vehicles are charged is captured but also how future vehicles and batteries are produced. If electricity has a life cycle carbon content similar to or better than a modern natural gas combined cycle powerplant full powertrain electrification makes sense from a climate point of view and in many cases also provides reductions in TCO. In general vehicles with smaller batteries and longer lifetime distances have the best cost and climate performance. If a very large driving range is required or clean electricity is not available hybrid powertrain and compressed natural gas vehicles are good options in terms of both costs and climate change impacts. Alternative powertrains containing large batteries or fuel cells are the most sensitive to changes in the future electricity system as their life cycles are more electricity intensive. The benefits of these alternative drivetrains are strongly linked to the success of the energy transition: the more the electricity sector is decarbonized the greater the benefit of electrifying passenger vehicles.
Risk-adjusted Preferences of Utility Companies and Institutional Investors for Battery Storage and Green Hydrogen Investment
Feb 2022
Publication
Achieving climate-neutrality requires considerable investment in energy storage systems (ESS) to integrate variable renewable energy sources into the grid. However investments into ESS are often unprofitable in particular for grid-scale battery storage and green hydrogen technologies prompting many actors to call for policy intervention. This study investigates investor-specific risk-return preferences for ESS investment and derives policy recommendations. Insights are drawn from 1605 experimental investment-related decisions obtained from 42 high-level institutional investors and utility representatives. Results reveal that both investor groups view revenue stacking as key to making ESS investment viable. While the expected return on investment is the most important project characteristic risk-return preferences for other features diverge between groups. Institutional investors appear more open to exploring new technological ventures (20% of utility respondents would not consider making investments into solar photovoltaic-hydrogen) whereas utilities seem to prefer greenfield projects (23% of surveyed institutional investors rejected such projects). Interestingly both groups show strong aversion towards energy market price risk. Institutional investors require a premium of 6.87 percentage points and utilities 5.54 percentage points for moving from a position of fully hedged against market price risk to a scenario where only 20% of revenue is fixed underlining the need for policy support.
Calibration of Hydrogen Coriolis Flow Meters Using Nitrogen and Air and Investigation of the Influence of Temperature on Measurement Accuracy
Feb 2021
Publication
The performance of four Coriolis flow meters designed for use in hydrogen refuelling stations was evaluated with air and nitrogen by three members of the MetroHyVe JRP consortium; NEL METAS and CESAME EXADEBIT.<br/>A wide range of conditions were tested overall with gas flow rates ranging from (0.05–2) kg/min and pressures ranging from (20–86) bar. The majority of tests were conducted at nominal pressures of either 20 bar or 40 bar in order to match the density of hydrogen at 350 bar and 20 °C or 700 bar and −40 °C. For the conditions tested pressure did not have a noticeable influence on meter performance.<br/>When the flow meters were operated at ambient temperatures and within the manufacturer's recommended flow rate ranges errors were generally within ±1%. Errors within ±0.5% were achievable for the medium to high flow rates.<br/>The influence of temperature on meter performance was also studied with testing under both stable and transient conditions and temperatures as low as −40 °C.<br/>When the tested flow meters were allowed sufficient time to reach thermal equilibrium with the incoming gas temperature effects were limited. The magnitude and spread of errors increased but errors within ±2% were achievable at moderate to high flow rates. Conversely errors as high as 15% were observed in tests where logging began before temperatures stabilised and there was a large difference in temperature between the flow meter and the incoming gas.<br/>One of the flow meters tested with nitrogen was later installed in a hydrogen refuelling station and tested against the METAS Hydrogen Field Test Standard (HFTS). Under these conditions errors ranged from 0.47% to 0.91%. Testing with nitrogen at the same flow rates yielded errors of −0.61% to −0.82%.
The Effect of Hydrogen Enrichment, Flame-flame Interaction, Confinement, and Asymmetry on the Acoustic Response of a Model Can Combustor
Apr 2022
Publication
To maximise power density practical gas turbine combustion systems have several injectors which can lead to complex interactions between flames. However our knowledge about the effect of flame-flame interactions on the flame response the essential element to predict the stability of a combustor is still limited. The present study investigates the effect of hydrogen enrichment flame-flame interaction confinement and asymmetries on the linear and non-linear acoustic response of three premixed flames in a simple can combustor. A parametric study of the linear response characterised by the flame transfer function (FTF) is performed for swirling and non-swirling flames. Flame-flame interactions were achieved by changing the injector spacing and the level of hydrogen enrichment by power from 10 to 50%. It was found that the latter had the most significant effect on the flame response. Asymmetry effects were investigated by changing one of the flames by using a different bluff-body to alter both the flame shape and flow field. The global flame response showed that the asymmetric cases can be reconstructed using a superposition of the two symmetric cases where all three bluff-bodies and flames are the same. Overall the linear response characterised by the flame transfer function (FTF) showed that the effect of increasing the level of hydrogen enrichment is more pronounced than the effect of the injector spacing. Increasing hydrogen enrichment results in more compact flames which minimises flame-flame interactions. More compact flames increase the cut-off frequency which can lead to self-excited modes at higher frequencies. Finally the non-linear response was characterised by measuring the flame describing function (FDF) at a frequency close to a self-excited mode of the combustor for different injector spacings and levels of hydrogen enrichment. It is shown that increasing the hydrogen enrichment leads to higher saturation amplitude whereas the effect of injector spacing has a comparably smaller effect.
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
Hydrogen Direct Injection: Optical Investigation of Premixed and Jet-guided Combustion Modes
Mar 2024
Publication
The classical approach to use hydrogen as a fuel for Internal Combustion Engines (ICEs) is premixed combustion. In order to avoid knocking and to limit NOx emissions very lean mixtures are employed thus resulting in a high boost pressure demand or low specific engine power. To overcome these limitations the possibility of a diesellike jet-guided combustion of hydrogen is explored. The approach is to ignite a directly injected hydrogen jet at its periphery by means of a conventional spark discharge followed by a diffusion-controlled combustion while injection remains active. An optically accessible Rapid Compression Expansion Machine (RCEM) is used to investigate ignition and combustion of underexpanded hydrogen jets in air by means of simultaneous Schlieren visualization and OH chemiluminescence. Different injection and ignition timing are investigated resulting in premixed partially premixed and diffusion-controlled (jet-guided) combustion conditions. The possibility of ignition and combustion of the hydrogen jets in diffusion-controlled conditions is investigated for different orientations of the incoming fuel jet with respect to spark location. The combustion tests are analyzed in terms of ignition success rate ignition delay reacting surface and heat release rate and an optimal orientation of the jet is assessed. The present study provides insights for optimizing hydrogen direct injection ignition and combustion for later application in ICEs.
Development of Water Electrolysis in the European Union
Feb 2014
Publication
In view of the recent interest in the transformation of renewable energy into a new energy vector that did not produce by combustion greenhouse gases emissions the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) commissioned this report to a consultancy to get a better understanding of the industrial perspectives of water electrolysis in Europe. and the role that public support has in that evolution.
Environmental Sustainability Assessment of Large-scale Hydrogen Production Using Prospective Life Cycle Analysis
Nov 2022
Publication
The need for a rapid transformation to low-carbon economies has rekindled hydrogen as a promising energy carrier. Yet the full range of environmental consequences of large-scale hydrogen production remains unclear. Here prospective life cycle analysis is used to compare different options to produce 500 Mt/yr of hydrogen including scenarios that consider likely changes to future supply chains. The resulting environmental and human health impacts of such production levels are further put into context with the Planetary Boundaries framework known human health burdens the impacts of the world economy and the externality-priced production costs that embody the environmental impact. The results indicate that climate change impacts of projected production levels are 3.3–5.4 times higher than the allocated planetary boundary with only green hydrogen from wind energy staying below the boundary. Human health impacts and other environmental impacts are less severe in comparison but metal depletion and ecotoxicity impacts of green hydrogen deserve further attention. Priced-in environmental damages increase the cost most strongly for blue hydrogen (from ∼2 to ∼5 USD/kg hydrogen) while such true costs drop most strongly for green hydrogen from solar photovoltaic (from ∼7 to ∼3 USD/kg hydrogen) when applying prospective life cycle analysis. This perspective helps to evaluate potentially unintended consequences and contributes to the debate about blue and green hydrogen.
Future Swiss Energy Economy: The Challenge of Storing Renewable Energy
Feb 2022
Publication
Fossil fuels and materials on Earth are a finite resource and the disposal of waste into the air on land and into water has an impact on our environment on a global level. Using Switzerland as an example the energy demand and the technical challenges and the economic feasibility of a transition to an energy economy based entirely on renewable energy were analyzed. Three approaches for the complete substitution of fossil fuels with renewable energy from photovoltaics called energy systems (ES) were considered i.e. a purely electric system with battery storage (ELC) hydrogen (HYS) and synthetic hydrocarbons (HCR). ELC is the most energy efficient solution; however it requires seasonal electricity storage to meet year-round energy needs. Meeting this need through batteries has a significant capital cost and is not feasible at current rates of battery production and expanding pumped hydropower to the extent necessary will have a big impact on the environment. The HYS allows underground hydrogen storage to balance seasonal demand but requires building of a hydrogen infrastructure and applications working with hydrogen. Finally the HCR requires the largest photovoltaic (PV) field but the infrastructure and the applications already exist. The model for Switzerland can be applied to other countries adapting the solar irradiation the energy demand and the storage options.
Optimising Fuel Supply Chains within Planetary Boundaries: A Case Study of Hydrogen for Road Transport in the UK
Jul 2020
Publication
The world-wide sustainability implications of transport technologies remain unclear because their assessment often relies on metrics that are hard to interpret from a global perspective. To contribute to filling this gap here we apply the concept of planetary boundaries (PBs) i.e. a set of biophysical limits critical for operating the planet safely to address the optimal design of sustainable fuel supply chains (SCs) focusing on hydrogen for vehicle use. By incorporating PBs into a mixed-integer linear programming model (MILP) we identify SC configurations that satisfy a given transport demand while minimising the PBs transgression level i.e. while reducing the risk of surpassing the ecological capacity of the Earth. On applying this methodology to the UK we find that the current fossil-based sector is unsustainable as it transgresses the energy imbalance CO2 concentration and ocean acidification PBs heavily i.e. five to 55-fold depending on the downscale principle. The move to hydrogen would help to reduce current transgression levels substantially i.e. reductions of 9–86% depending on the case. However it would be insufficient to operate entirely within all the PBs concurrently. The minimum impact SCs would produce hydrogen via water electrolysis powered by wind and nuclear energy and store it in compressed form followed by distribution via rail which would require as much as 37 TWh of electricity per year. Our work unfolds new avenues for the incorporation of PBs in the assessment and optimisation of energy systems to arrive at sustainable solutions that are entirely consistent with the carrying capacity of the planet.
Life Cycle Assessment and Economic Analysis of an Innovative Biogas Membrane Reformer for Hydrogen Production
Feb 2019
Publication
This work investigates the environmental and economic performances of a membrane reactor for hydrogen production from raw biogas. Potential benefits of the innovative technology are compared against reference hydrogen production processes based on steam (or autothermal) reforming water gas shift reactors and a pressure swing adsorption unit. Both biogas produced by landfill and anaerobic digestion are considered to evaluate the impact of biogas composition. Starting from the thermodynamic results the environmental analysis is carried out using environmental Life cycle assessment (LCA). Results show that the adoption of the membrane reactor increases the system efficiency by more than 20 percentage points with respect to the reference cases. LCA analysis shows that the innovative BIONICO system performs better than reference systems when biogas becomes a limiting factor for hydrogen production to satisfy market demand as a higher biogas conversion efficiency can potentially substitute more hydrogen produced by fossil fuels (natural gas). However when biogas is not a limiting factor for hydrogen production the innovative system can perform either similar or worse than reference systems as in this case impacts are largely dominated by grid electric energy demand and component use rather than conversion efficiency. Focusing on the economic results hydrogen production cost shows lower value with respect to the reference cases (4 €/kgH2 vs 4.2 €/kgH2) at the same hydrogen delivery pressure of 20 bar. Between landfill and anaerobic digestion cases the latter has the lower costs as a consequence of the higher methane content.
A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants
Jul 2022
Publication
Proton-exchange membrane fuel cells (PEMFCs) are regarded as promising alternatives to internal combustion engines (ICEs) to reduce pollution. Recent research on PEMFCs focuses on achieving higher power densities reducing the refueling time mitigating the final price and decreasing the degradations to facilitate the commercialization of hydrogen mobility. The design of bipolar plates and compression kits in addition to their coating can effectively improve performance increase durability and support water/thermal management. Past reviews usually focused on the specific aspect which can hardly provide readers with a complete picture of the key challenges facing and advances in the long-term performance of PEMFCs. This paper aims to deliver a comprehensive source to review from both experimental analytical and numerical viewpoints design challenges degradation modeling protective coatings for bipolar plates and key operational challenges facing and solutions to the stack to prevent contamination. The significant research gaps in the long-term performance of PEMFCs are identified as (1) improved bipolar-plate design and coating (2) the optimization of the design of sealing and compression kits to reduce mechanical stresses and (3) stack degradation regarding fuel contamination and dynamic operation.
The Geopolitics of Hydrogen, Volume 1: European Strategies in Global Perspective
Jan 2024
Publication
Rainer Quitzow,
Yana Zabanova,
Almudena Nunez,
Ines Bouacida,
Michał Smoleń,
Wojciech Żelisko,
John Szabo,
Ignacio Urbasos,
Gonzalo Escribano,
Andrea Prontera,
Roelof Stam,
Coby van der Linder,
Pier Stapersma,
Stefan Ćetković,
Janek Stockburger,
Jon Birger Skjærseth,
Per Ove Eikeland,
Tor Håkon Jackson Inderberg and
Mari Lie Larsen
Chapters:<br/>♦ Introduction by Rainer Quitzow and Yana Zabanova<br/>♦ The EU in the Global Hydrogen Race: Bringing Together Climate Action Energy Security and Industrial Policy by Yana Zabanova<br/>♦ Germany’s Hydrogen Strategy: Securing Industrial Leadership in a Carbon–Neutral Economy by Almudena Nunez and Rainer Quitzow<br/>♦ France’s Hydrogen Strategy: Focusing on Domestic Hydrogen Production to Decarbonise Industry and Mobility by Ines Bouacida<br/>♦ International Dimension of the Polish Hydrogen Strategy. Conditions and Potential for Future Development by Michał Smoleń and Wojciech Żelisko<br/>♦ Hydrogen Affairs in Hungary’s Politically Confined Ambition byJohn Szabo<br/>♦ Spain’s Hydrogen Ambition: Between Reindustrialisation and Export-Led Energy Integration with the EU by Ignacio Urbasos and Gonzalo Escribano<br/>♦ Italian Hydrogen Policy: Drivers Constraints and Recent Developments by Andrea Prontera<br/>♦ Hydrogen Policy in the Netherlands: Laying the Foundations for a Scalable Hydrogen Value Chain by Roelof Stam Coby van der Linde and Pier Stapersma<br/>♦ Hydrogen Strategy of Sweden: Unpacking the Multiple Drivers and Potential Barriers to Hydrogen Development by Stefan Ćetković and Janek Stockburger<br/>♦ Norway’s Hydrogen Strategy: Unveiling Green Opportunities and Blue Export Ambitions by Jon Birger Skjærseth Per Ove Eikeland Tor Håkon Jackson Inderberg and Mari Lie Larsen<br/>♦ The Geopolitics of Hydrogen in Europe: The Interplay between EU and Member State Policies by Rainer Quitzow and Yana Zabanova
Shifting to Low-carbon Hydrogen Production Supports Job Creation but Does Not Gurantee a Just Transition
Nov 2024
Publication
Transitioning from carbon-intensive steam methane reforming to low-carbon hydrogen production is essential for decarbonizing the European industrial sector. However the employment impact of such a transition remains unclear. Here we estimate the effects using a transition pathways optimization model and industrial survey data. The results show that an electrolysis-based hydrogen sector transition would create 40000 jobs in the hydrogen sector by 2050. However these jobs are not equally distributed with Western Europe hosting the largest share (40%) and 20% of current hydrogen-producing regions experiencing net job decreases. Even after accounting for renewable energy jobs created by electrolysis-driven electricity demand growth the 2050 low-carbon hydrogen workforce would provide only 10% of the jobs currently offered by European fossil fuel production. Numerous uncertainties and regional development inequities suggest the need for sector-diversified workforce transition plans and training programs to foster skills suited to multiple low-carbon opportunities.
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Investigations on Pressure Dependence of Coriolis Mass Flow Meters Used at Hydrogen Refueling Stations
Sep 2020
Publication
In the framework of the ongoing EMPIR JRP 16ENG01 ‘‘Metrology for Hydrogen Vehicles’’ a main task is to investigate the influence of pressure on the measurement accuracy of Coriolis Mass Flow Meters (CFM) used at Hydrogen Refueling Stations (HRS). At a HRS hydrogen is transferred at very high and changing pressures with simultaneously varying flow rates and temperatures. It is clearly very difficult for CFMs to achieve the current legal requirements with respect to mass flow measurement accuracy at these measurement conditions. As a result of the very dynamic filling process it was observed that the accuracy of mass flow measurement at different pressure ranges is not sufficient. At higher pressures it was found that particularly short refueling times cause significant measurement deviations. On this background it may be concluded that pressure has a great impact on the accuracy of mass flow measurement. To gain a deeper understanding of this matter RISE has built a unique high-pressure test facility. With the aid of this newly developed test rig it is possible to calibrate CFMs over a wide pressure and flow range with water or base oils as test medium. The test rig allows calibration measurements under the conditions prevailing at a 70 MPa HRS regarding mass flows (up to 3.6 kg min−1) and pressures (up to 87.5 MPa).
No more items...