Switzerland
The Role of Hydrogen in Heavy Transport to Operate within Planetary Boundaries
Jul 2021
Publication
Green hydrogen i.e. produced from renewable resources is attracting attention as an alternative fuel for the future of heavy road transport and long-distance driving. However the benefits linked to zero pollution at the usage stage can be overturned when considering the upstream processes linked to the raw materials and energy requirements. To better understand the global environmental implications of fuelling heavy transport with hydrogen we quantified the environmental impacts over the full life cycle of hydrogen use in the context of the Planetary Boundaries (PBs). The scenarios assessed cover hydrogen from biomass gasification (with and without carbon capture and storage [CCS]) and electrolysis powered by wind solar bioenergy with CCS nuclear and grid electricity. Our results show that the current diesel-based-heavy transport sector is unsustainable due to the transgression of the climate change-related PBs (exceeding standalone by two times the global climate-change budget). Hydrogen-fuelled heavy transport would reduce the global pressure on the climate change-related PBs helping the transport sector to stay within the safe operating space (i.e. below one-third of the global ecological budget in all the scenarios analysed). However the best scenarios in terms of climate change which are biomass-based would shift burdens to the biosphere integrity and nitrogen flow PBs. In contrast burden shifting in the electrolytic scenarios would be negligible with hydrogen from wind electricity emerging as an appealing technology despite attaining higher carbon emissions than the biomass routes
Dynamic System Modeling of Thermally-integrated Concentrated PV-electrolysis
Feb 2021
Publication
Understanding the dynamic response of a solar fuel processing system utilizing concentrated solar radiation and made of a thermally-integrated photovoltaic (PV) and water electrolyzer (EC) is important for the design development and implementation of this technology. A detailed dynamic non-linear process model is introduced for the fundamental system components (i.e. PV EC pump etc.) in order to investigate the coupled system behavior and performance synergy notably arising from the thermal integration. The nominal hydrogen production power is ∼2 kW at a hydrogen system efficiency of 16–21% considering a high performance triple junction III-V PV module and a proton exchange membrane EC. The device operating point relative to the maximum power point of the PV was shown to have a differing influence on the system performance when subject to temperature changes. The non-linear coupled behavior was characterised in response to step changes in water flowrate and solar irradiance and hysteresis of the current-voltage operating point was demonstrated. Whilst the system responds thermally to changes in operating conditions in the range of 0.5–2 min which leads to advantageously short start-up times a number of control challenges are identified such as the impact of pump failure electrical PV-EC disconnection and the potentially damaging accentuated temperature rise at lower water flowrates. Finally the simulation of co-generation of heat and hydrogen for various operating conditions demonstrates the significant potential for system efficiency enhancements and the required development of control strategies for demand matching is discussed.
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units i. e. for stationary applications.<br/>With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004 the use of metal hydrides for hydrogen storage in mobile applications has been established with new application fields coming into focus.<br/>In the last decades a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more partly less extensively characterized.<br/>In addition based on the thermodynamic properties of metal hydrides this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.<br/>In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage” different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Towards Climate Resilient Urban Energy Systems: A Review
Jun 2020
Publication
Climate change and increased urban population are two major concerns for society. Moving towards more sustainable energy solutions in the urban context by integrating renewable energy technologies supports decarbonizing the energy sector and climate change mitigation. A successful transition also needs adequate consideration of climate change including extreme events to ensure the reliable performance of energy systems in the long run. This review provides an overview of and insight into the progress achieved in the energy sector to adapt to climate change focusing on the climate resilience of urban energy systems. The state-of-the-art methodology to assess impacts of climate change including extreme events and uncertainties on the design and performance of energy systems is described and discussed. Climate resilience is an emerging concept that is increasingly used to represent the durability and stable performance of energy systems against extreme climate events. However it has not yet been adequately explored and widely used as its definition has not been clearly articulated and assessment is mostly based on qualitative aspects. This study reveals that a major limitation in the state-of-the-art is the inadequacy of climate change adaptation approaches in designing and preparing urban energy systems to satisfactorily address plausible extreme climate events. Furthermore the complexity of the climate and energy models and the mismatch between their temporal and spatial resolutions are the major limitations in linking these models. Therefore few studies have focused on the design and operation of urban energy infrastructure in terms of climate resilience. Considering the occurrence of extreme climate events and increasing demand for implementing climate adaptation strategies the study highlights the importance of improving energy system models to consider future climate variations including extreme events to identify climate resilient energy transition pathways.
Power-to-fuels Via Solid-oxide Electrolyzer: Operating Window and Techno-economics
May 2019
Publication
Power-to-fuel systems via solid-oxide electrolysis are promising for storing excess renewable electricity by efficient electrolysis of steam (or co-electrolysis of steam and CO2) into hydrogen (or syngas) which can be further converted into synthetic fuels with plant-wise thermal integration. Electrolysis stack performance and durability determine the system design performance and long-term operating strategy; thus solid-oxide electrolyzer based power-to-fuels were investigated from the stack to system levels. At the stack level the data from a 6000-h stack testing under laboratory isothermal conditions were used to calibrate a quasi-2D model which enables to predict practical isothermal stack performance with reasonable accuracy. Feasible stack operating windows meeting various design specifications (e.g. specific syngas composition) were further generated to support the selection of operating points. At the system level with the chosen similar stack operating points various power-to-fuel systems including power-to-hydrogen power-to-methane power-to-methanol (dimethyl ether) and power-to-gasoline were compared techno-economically considering system-level heat integration. Several operating strategies of the stack were compared to address the increase in stack temperature due to degradation. The modeling results show that the system efficiency for producing H2 methane methanol/dimethyl ether and gasoline decreases sequentially from 94% (power-to-H2) to 64% (power-to-gasoline) based on a higher heating value. Co-electrolysis which allows better heat integration can improve the efficiency of the systems with less exothermic fuel-synthesis processes (e.g. methanol/dimethyl ether) but offers limited advantages for power-to-methane and power-to-gasoline systems. In a likely future scenario where the growing amount of electricity from renewable sources results in increasing periods of a negative electricity price solid oxide electrolyser based power-to-fuel systems are highly suitable for levelling the price fluctuations in an economic way.
Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development
Feb 2017
Publication
Although polymer electrolyte water electrolyzers (PEWEs) have been used in small-scale (kW to tens of kW range) applications for several decades PEWE technology for hydrogen production in energy applications (power-to-gas power-to-fuel etc.) requires significant improvements in the technology to address the challenges associated with cost performance and durability. Systems with power of hundreds of kW or even MWs corresponding to hydrogen production rates of around 10 to 20 kg/h have started to appear in the past 5 years. The thin (∼0.2 mm) polymer electrolyte in the PEWE with low ohmic resistance compared to the alkaline cell with liquid electrolyte allows operation at high current densities of 1–3 A/cm2 and high differential pressure. This article after an introductory overview of the operating principles of PEWE and state-of-the-art discusses the state of understanding of key phenomena determining and limiting performance durability and commercial readiness identifies important ‘gaps’ in understanding and essential development needs to bring PEWE science & engineering forward to prosper in the energy market as one of its future backbone technologies. For this to be successful science engineering and process development as well as business and market development need to go hand in hand.
Optimal Pathways for the Decarbonisation of the Transport Sector: Trade-offs Between Battery and Hydrogen Technologies Using a Whole Energy System Perspective
Jun 2023
Publication
Several countries have revised their targets in recent years to reach net-zero CO2 emissions across all sectors by 2050 and the transport sector is responsible for a significant share of these emissions. This study compares possible pathways to decarbonise the transport sector through electrification including passenger cars light commercial vehicles and heavy commercial vehicles. To do so we explore 125 scenarios by varying the share of battery and hydrogen-based fuel cell electric vehicles in each of the three categories above independently. We further model the decarbonisation of the industrial hydrogen demand using electrolysers with hydrogen storage. To explore the potential role of electric and hydrogen transport as well as their trade-offs we use GRIMSEL an open-source sector coupling energy system model of Switzerland which includes the residential commercial industrial and transport sectors with four energy carriers namely electricity heat hot water and hydrogen. The total costs are minimised from a social planner perspective. We find that the full electrification of the transport sector could lead on average to a 12% increase in costs by 2050 and 1.3 MtCO2/year which represents a 90% CO2 emissions reduction for the whole sector. Second the transport energy self-sufficiency (i.e. the share of domestic electricity generation in final transport demand) may reach up to 50% for the scenarios with the largest share of battery electric vehicles mainly due to a smaller energy demand than with hydrogen vehicles. Third more than three quarters of the industrial hydrogen production is met by local photovoltaic electricity coupled with battery at minimum costs i.e. green hydrogen. Finally the use of hydrogen as an energy carrier to store electricity over a long period is not cost-optimal.
Comparative Exergy and Environmental Assessment of the Residual Biomass Gasification Routes for Hydrogen and Ammonia Production
Jul 2023
Publication
The need to reduce the dependency of chemicals on fossil fuels has recently motivated the adoption of renewable energies in those sectors. In addition due to a growing population the treatment and disposition of residual biomass from agricultural processes such as sugar cane and orange bagasse or even from human waste such as sewage sludge will be a challenge for the next generation. These residual biomasses can be an attractive alternative for the production of environmentally friendly fuels and make the economy more circular and efficient. However these raw materials have been hitherto widely used as fuel for boilers or disposed of in sanitary landfills losing their capacity to generate other by-products in addition to contributing to the emissions of gases that promote global warming. For this reason this work analyzes and optimizes the biomass-based routes of biochemical production (namely hydrogen and ammonia) using the gasification of residual biomasses. Moreover the capture of biogenic CO2 aims to reduce the environmental burden leading to negative emissions in the overall energy system. In this context the chemical plants were designed modeled and simulated using Aspen plus™ software. The energy integration and optimization were performed using the OSMOSE Lua Platform. The exergy destruction exergy efficiency and general balance of the CO2 emissions were evaluated. As a result the irreversibility generated by the gasification unit has a relevant influence on the exergy efficiency of the entire plant. On the other hand an overall negative emission balance of −5.95 kgCO2/kgH2 in the hydrogen production route and −1.615 kgCO2/kgNH3 in the ammonia production route can be achieved thus removing from the atmosphere 0.901 tCO2/tbiomass and 1.096 tCO2/tbiomass respectively.
Energy Management of Hydrogen Hybrid Electric Vehicles—Online-Capable Control
May 2024
Publication
The results shown in this paper extend our research group’s previous work which presents the theoretically achievable hydrogen engine-out NOeo x (H2-NOeo x ) Pareto front of a hydrogen hybrid electric vehicle (H2-HEV). While the Pareto front is calculated offline which requires significant computing power and time this work presents an online-capable algorithm to tackle the energy management of a H2-HEV with explicit consideration of the H2-NOeo x trade-off. Through the inclusion of realistic predictive data on the upcoming driving mission a model predictive control algorithm (MPC) is utilized to effectively tackle the conflicting goal of achieving low hydrogen consumption while simultaneously minimizing NOeo x . In a case study it is shown that MPC is able to satisfy user-defined NOeo x limits over the course of various driving missions. Moreover a comparison with the optimal Pareto front highlights MPC’s ability to achieve close-to-optimal fuel performance for any desired cumulated NOeo x target on four realistic routes for passenger cars.
How to Make Climate-neutral Aviation Fly
Jul 2023
Publication
The European aviation sector must substantially reduce climate impacts to reach net-zero goals. This reduction however must not be limited to flight CO2 emissions since such a narrow focus leaves up to 80% of climate impacts unaccounted for. Based on rigorous life-cycle assessment and a time-dependent quantification of non-CO2 climate impacts here we show that from a technological standpoint using electricity-based synthetic jet fuels and compensating climate impacts via direct air carbon capture and storage (DACCS) can enable climate-neutral aviation. However with a continuous increase in air traffic synthetic jet fuel produced with electricity from renewables would exert excessive pressure on economic and natural resources. Alternatively compensating climate impacts of fossil jet fuel via DACCS would require massive CO2 storage volumes and prolong dependence on fossil fuels. Here we demonstrate that a European climate-neutral aviation will fly if air traffic is reduced to limit the scale of the climate impacts to mitigate.
First Solar Hydrogen Storage in a Private Building in Western Switzerland: Building energy Analysis and Schematic Design
Sep 2019
Publication
Self-sufficiency of buildings with carbon emission reduction can be obtained thanks to the introduction of Photovoltaics systems coupled with Hydrogen seasonal storage. To be self-sufficient over the year the electricity converted to hydrogen by electrolysis during the sunny season can be re-used with the help of fuel cells during the winter season. This article is dealing with the dimensioning methodology of a solar PV hydrogen-electrochemical system for self-sufficient buildings. We introduce the case study of the first private building in western Switzerland that will be equipped with solar hydrogen storage. Calculation results of the dimensioning of the PV system with storage will be presented. The life cycle assessment and the calculations of the environmental indicators GWP and CED will be introduced.
Combined Hydrogen Production and Electricity Storage using a Vanadium Manganese Redox Dual-flow Battery
Aug 2021
Publication
A redox dual-flow battery is distinct from a traditional redox flow battery (RFB) in that the former includes a secondary energy platform in which the pre-charged electrolytes can be discharged in external catalytic reactors through decoupled redox-mediated hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The concept offers several advantages over conventional electrolysis in terms of safety durability modularity and purity. In this work we demonstrate a vanadium-manganese redox-flow battery in which Mn3+/Mn2+ and V3+/V2+ respectively mediate the OER and the HER in Mo2C-based and RuO2-based catalysts. The flow battery demonstrates an average energy efficiency of 68% at a current density of 50 mA ⋅ cm−2 (cell voltage = 1.92 V) and a relative energy density 45% higher than the conventional all-vanadium RFB. Both electrolytes are spontaneously discharged through redox-mediated HER and OER with a faradic efficiency close to 100%.
Analyzing the Competitiveness of Low-carbon Drive-technologies in Road-freight: A Total Cost of Ownership Analysis in Europe
Nov 2021
Publication
In light of the Paris Agreement road-freight represents a critically difficult-to-abate sector. In order to meet the ambitious European transport sector emissions reduction targets a rapid transition to zero-carbon road-freight is necessary. However limited policy assessments indicate where and how to appropriately intervene in this sector. To support policy-makers in accelerating the zero-carbon road-freight transition this paper examines the relative cost competitiveness between commercial vehicles of varying alternative drive-technologies through a total cost of ownership (TCO) assessment. We identify key parameters that when targeted enable the uptake of these more sustainable niche technologies. The assessment is based on a newly compiled database of cost parameters which were triangulated through expert interviews. The results show that cost competitiveness for low- or zero-emission niche technologies in certain application segments and European countries is exhibited already today. In particular we find battery electric vehicles to show great promise in the light- and medium-duty segments but also in the heavy-duty long-haul segments in countries that have enacted targeted policy measures. Three TCO parameters drive this competitiveness: tolls fuel costs and CAPEX subsidies. Based on our analysis we propose that policy-makers target OPEX before CAPEX parameters as well utilize a mix of policy interventions to ensure greater reach increased efficiency and increased policy flexibility.
Moving Toward the Low-carbon Hydrogen Economy: Experiences and Key Learnings from National Case Studies
Sep 2022
Publication
The urgency to achieve net-zero carbon dioxide (CO2) emissions by 2050 as first presented by the IPCC special report on 1.5°C Global Warming has spurred renewed interest in hydrogen to complement electrification for widespread decarbonization of the economy. We present reflections on estimates of future hydrogen demand optimization of infrastructure for hydrogen production transport and storage development of viable business cases and environmental impact evaluations using life cycle assessments. We highlight challenges and opportunities that are common across studies of the business cases for hydrogen in Germany the UK the Netherlands Switzerland and Norway. The use of hydrogen in the industrial sector is an important driver and could incentivise large-scale hydrogen value chains. In the long-term hydrogen becomes important also for the transport sector. Hydrogen production from natural gas with capture and permanent storage of the produced CO2 (CCS) enables large-scale hydrogen production in the intermediate future and is complementary to hydrogen from renewable power. Furthermore timely establishment of hydrogen and CO2 infrastructures serves as an anchor to support the deployment of carbon dioxide removal technologies such as direct air carbon capture and storage (DACCS) and biohydrogen production with CCS. Significant public support is needed to ensure coordinated planning governance and the establishment of supportive regulatory frameworks which foster the growth of hydrogen markets.
Planetary Boundaries Assessment of Deep Decarbonisation Options for Building Heating in the European Union
Jan 2023
Publication
Building heating is one of the sectors for which multiple decarbonisation options exist and current geopolitical tensions provide urgency to design adequate regional policies. Heat pumps and hydrogen boilers alongside alternative district heating systems are the most promising alternatives. Although a host of city or country-level studies exist it remains controversial what role hydrogen should play for building heating in the European Union compared with electrification and how blue and green hydrogen differ in terms of costs and environmental impacts. This works assesses the optimal technology mix for staying within planetary boundaries and the influence of international cooperation and political restrictions. To perform the analysis a bottom-up optimisation model was developed incorporating life cycle assessment constraints and covering production storage transport of energy and carbon dioxide as well as grid and non-grid connected end-users of heat. It was found that a building heating system within planetary boundaries is feasible through large-scale electrification via heat pumps although at a higher cost than the current system with abatement costs of around 200 €/ton CO2. Increasing interconnector capacity or onshore wind energy is found to be vital to staying within boundaries. A strong trade-off for hydrogen was identified with blue hydrogen being cost-competitive but vastly unsustainable (when applied to heating) and green hydrogen being 2–3 times more expensive than electrification while still transgressing several planetary boundaries. The insights from this work indicate that heat pumps and renewable electricity should be prioritised over hydrogen-based heating in most cases and grid-stability and storage aspects explored further while revealing a need for policy instruments to mitigate increased costs for consumers.
Solar Fuel Processing: Comparative Mini-review on Research, Technology Development, and Scaling
Oct 2022
Publication
Solar energy provides an unprecedented potential as a renewable and sustainable energy resource and will substantially reshape our future energy economy. It is not only useful in producing electricity but also (hightemperature) heat and fuel both required for non-electrifiable energy services. Fuels are particularly valuable as they are energy dense and storable and they can also act as a feedstock for the chemical industry. Technical pathways for the processing of solar fuels include thermal pathways (e.g. solar thermochemistry) photo pathways (e.g. photoelectrochemistry) and combinations thereof. A review of theoretical limits indicates that all technical solar fuel processing pathways have the potential for competitive solar-to-fuel efficiencies (>10 %) but require very different operating conditions (e.g. temperature levels or oxygen partial pressures) making them complementary and highly versatile for process integration. Progress in photoelectrochemical devices and solar thermochemical reactors over the last 50 + years are summarized showing encouraging trends in terms of performance technological viability and scaling.
Perspective on the Hydrogen Economy as a Pathway to Reach Net-zero CO2 Emissions in Europe
Jan 2022
Publication
The envisioned role of hydrogen in the energy transition – or the concept of a hydrogen economy – has varied through the years. In the past hydrogen was mainly considered a clean fuel for cars and/or electricity production; but the current renewed interest stems from the versatility of hydrogen in aiding the transition to CO2 neutrality where the capability to tackle emissions from distributed applications and complex industrial processes is of paramount importance. However the hydrogen economy will not materialise without strong political support and robust infrastructure design. Hydrogen deployment needs to address multiple barriers at once including technology development for hydrogen production and conversion infrastructure co-creation policy market design and business model development. In light of these challenges we have brought together a group of hydrogen researchers who study the multiple interconnected disciplines to offer a perspective on what is needed to deploy the hydrogen economy as part of the drive towards net-zero-CO2 societies. We do this by analysing (i) hydrogen end-use technologies and applications (ii) hydrogen production methods (iii) hydrogen transport and storage networks (iv) legal and regulatory aspects and (v) business models. For each of these we provide key take home messages ranging from the current status to the outlook and needs for further research. Overall we provide the reader with a thorough understanding of the elements in the hydrogen economy state of play and gaps to be filled.
Conditions for Profitable Operation of P2X Energy Hubs to Meet Local Demand Under Energy Market Access
Feb 2023
Publication
This paper analyzes the operation of an energy hub on a community level with an integrated P2X facility and with access to energy markets. In our case P2X allows converting power to hydrogen heat methane or back to power. We consider the energy hub as a large prosumer who can be both a producer and consumer in the markets with the novelty that P2X technology is available. We investigate how such a P2X energy hub trades optimally in the electricity market and satisfies local energy demand under the assumption of a long-term strong climate scenario in year 2050. For numerical analysis a case study of a mountain village in Switzerland is used. One of the main contributions of this paper is to quantify key conditions for profitable operations of such a P2X energy hub. In particular the analysis includes impacts of influencing factors on profits and operational patterns in terms of different degrees of self-sufficiency and different availability of local renewable resources. Moreover the access to real-time wholesale market electricity price signals and a future retail hydrogen market is assessed. The key factors for the successful operation of a P2X energy hub are identified to be sufficient local renewable resources and access to a retail market of hydrogen. The results also show that the P2X operation leads to an increased deployment of local renewables especially in the case of low initial deployment; on the other hand seasonal storage plays a subordinated role. Additionally P2X lowers for the community the wholesale electricity market trading volumes.
Smart Power-to-gas Deployment Strategies Informed by Spatially Explicit Cost and Value Models
Oct 2022
Publication
Green hydrogen allows coupling renewable electricity to hard-to-decarbonize sectors such as long-distance transport and carbon-intensive industries in order to achieve net zero emissions. Evaluating the cost and value of power-to-gas is a major challenge owing to the spatial distribution and temporal variability of renewable electricity CO2 and energy demand. Here we propose a method based on geographic information system (GIS) and techno-economic modeling to: (i) compare the levelized cost and levelized value of power-to-gas across locations; (ii) identify potential hotspots for their future implementation in Switzerland; and (iii) set cost improvement targets as well as smart deployment strategies. Our method accounts for the spatial and temporal (both hourly and seasonal) availability of renewable electricity and CO2 sources as well as the presence of gas infrastructure heating networks oxygen and gas demand centers. We find that only green hydrogen plants connected directly to run-of-river hydropower plants are currently profitable in Switzerland (with NPV per CAPEX ranging between 2.3-5.6). However considering technological progress by 2050 a few green hydrogen plants deployed in the demand centers and powered by rooftop PV electricity will also become economically attractive. Moreover a few synthetic methane plants connected to run-of-river hydropower plants currently show slight profitability (NPV per CAPEX reaching values up to 1.3) and in 2050 (NPV per CAPEX up to 3.1) whereas those connected to rooftop PV will remain uneconomical even in 2050. Based on our findings we devise a long-term roadmap for policy makers and project developers to plan future green hydrogen projects. The proposed methodology which is applied to Switzerland can be extended to other countries.
Increasing the Energy Efficiency of Gas Boosters for Hydrogen Storage and for Refueling Stations
Feb 2023
Publication
A new electrically driven gas booster is described as an alternative to the classical air-driven gas boosters known for their poor energetic efficiency. These boosters are used in small scale Hydrogen storage facilities and in refueling stations for Hydrogen vehicles. In such applications the overall energy count is of significance and must include the efficiency of the compression stage. The proposed system uses an electric motor instead of the pneumatic actuator and increases the total efficiency of the compression process. Two mechanical principles are studied for the transformation of the rotational motion of the motor to the linear displacement of the compressor pistons. The strongly fluctuating power of the compressor is smoothed by an active capacitive auxiliary storage device connected to the DC circuit of the power converter. The proposed system has been verified by numeric simulation including the thermodynamic phenomena the kinetics of the new compressor drive and the the operation of the circuits of the power smoothing system.
No more items...