Chile
Advances in Catalysts for Hydrogen Production: A Comprehensive Review of Materials and Mechanisms
Feb 2025
Publication
This review explores the recent advancements in catalyst technology for hydrogen production emphasizing the role of catalysts in efficient and sustainable hydrogen generation. This involves a comprehensive analysis of various catalyst materials including noble metals transition metals carbon-based nanomaterials and metal–organic frameworks along with their mechanisms and performance outcomes. Major findings reveal that while noble metal catalysts such as platinum and iridium exhibit exceptional activity their high cost and scarcity necessitate the exploration of alternative materials. Transition metal catalysts and single-atom catalysts have emerged as promising substitutes demonstrating their potential for enhancing catalytic efficiency and stability. These findings underscore the importance of interdisciplinary approaches to catalyst design which can lead to scalable and economically viable hydrogen production systems. The review concludes that ongoing research should focus on addressing challenges related to catalyst stability scalability and the integration of renewable energy sources paving the way for a sustainable hydrogen economy. By fostering innovation in catalyst development this work aims to contribute to the transition towards cleaner energy solutions and a more resilient energy future.
Socio-environmental and Technical Factors Assessment of Photovoltaic Hydrogen Production in Antofagasta, Chile
Apr 2024
Publication
This study introduces a method for identifying territories ideal for establishing photovoltaic (PV) plants for green hydrogen (GH2 ) production in the Antofagasta region of northern Chile a location celebrated for its outstanding solar energy potential. Assessing the viability of PV plant installation necessitates a balanced consideration of technical aspects and socio-environmental constraints such as the proximity to areas of ecological importance and indigenous communities to identify potential zones for solar and non-conventional renewable energy (NCRE)-based hydrogen production. To tackle this challenge we propose a methodology that utilizes geospatial analysis integrating Geographic Information System (GIS) tools with sensitivity analysis to determine the most suitable sites for PV plant installation in the Antofagasta region. Our geospatial analysis employs the QGIS software to identify these optimal locations while sensitivity analysis uses the Sørensen–Dice coefficient method to assess the similarity among chosen socio-environmental variables. Applying this methodology to the Antofagasta region reveals that a significant area within a 15 km radius of existing road networks and electrical substations is favorable for photovoltaic projects. Our sensitivity analysis further highlights the limiting effects of socio-environmental factors and their interactions. Moreover our research finds that enlarging areas of socio-environmental importance could increase the total hydrogen production by about 10% per commune indicating the impact of these factors on the potential for renewable energy production.
Green Hydrogen Integration in Aluminium Recycling: Techno-economic Analysis Towards Sustainability Transition in the Expanding Aluminium Market
Feb 2024
Publication
The use of aluminum-based products is widespread and growing particularly in industries such as automotive food packaging and construction. Obtaining aluminum is expensive and energy-intensive making the recycling of existing products essential for economic and environmental viability. This work explores the potential of using green hydrogen as a replacement for natural gas in the smelting and refining furnaces in aluminum recycling facilities. The adoption of green hydrogen has the potential to curtail approximately 4.54 Ktons/year of CO2 emissions rendering it a sustainable and economically advantageous solution. The work evaluates the economic viability of a case study through assessing the Net Present Value (NPV) and the Internal Rate of Return (IRR). Furthermore it is employed single- and multi-parameter sensitivity analyses to obtain insight on the most relevant conditions to achieve economic viability. Results demonstrate that integrating on-site green hydrogen generation yields a favorable NPV of €57370 an IRR of 9.83% and a 19.63-year payback period. The primary factors influencing NPV are the initial electricity consumption stack and the H2 price.
Optimal Decarbonisation Pathways for the Italian Energy System: Modelling a Long-term Energy Transition to Achieve Zero Emission by 2050
May 2024
Publication
The goal of achieving a zero-emission energy system by 2050 requires accurate energy planning to minimise the overall cost of the energy transition. Long-term energy models based on cost-optimal solutions are extremely dependent on the cost forecasts of different technologies. However such forecasts are inherently uncertain. The aim of the present work is to identify a cost-optimal pathway for the Italian energy system decarbonisation and assess how renewable cost scenarios can affect the optimal solution. The analysis has been carried out with the H2RES model a single-objective optimisation algorithm based on Linear Programming. Different cost scenarios for photovoltaics on-shore and off-shore wind power and lithium-ion batteries are simulated. Results indicate that a 100% renewable energy system in Italy is technically feasible. Power-to-X technologies are crucial for balancing purposes enabling a share of non-dispatchable generation higher than 90%. Renewable cost scenarios affect the energy mix however both on-shore and off-shore wind saturate the maximum capacity potential in almost all scenarios. Cost forecasts for lithium-ion batteries have a significant impact on their optimal capacity and the role of hydrogen. Indeed as battery costs rise fuel cells emerge as the main solution for balancing services. This study emphasises the importance of conducting cost sensitivity analyses in long-term energy planning. Such analyses can help to determine how changes in cost forecasts may affect the optimal strategies for decarbonising national energy systems.
A Fuzzy Multi-Criteria Framework for Sustainability Assessment of Wind–Hydrogen Energy Projects: Method and Case Application
Oct 2025
Publication
This study develops a comprehensive framework for assessing the sustainability performance of wind power systems integrated with hydrogen storage (WPCHS). Unlike previous works that mainly emphasized economic or environmental indicators our approach incorporates a balanced set of economic environmental and social criteria supported by expert evaluation. To address the uncertainty in human judgment we introduce an interval-valued fuzzy TOPSIS model that provides a more realistic representation of expert assessments. A case study in Manjil Iran demonstrates the application of the model highlighting that project A4 outperforms other alternatives. The findings show that both economic factors (e.g. levelized cost of energy) and social aspects (e.g. poverty alleviation) strongly influence project rankings. Compared with earlier studies in Europe and the Middle East this work contributes by extending the evaluation scope beyond financial and environmental metrics to include social sustainability thereby enhancing decision-making relevance for policymakers and investors.
Green Hydrogen Viability in the Transition to a Fully-Renewable Energy Grid
Sep 2025
Publication
With the transition to a fully renewable energy grid arises the need for a green source of stability and baseload support which classical renewable generation such as wind and solar cannot offer due to their uncertain and highly-variable generation. In this paper we study whether green hydrogen can close this gap as a source of supplemental generation and storage. We design a two-stage mixed-integer stochastic optimization model that accounts for uncertainties in renewable generation. Our model considers the investment in renewable plants and hydrogen storage as well as the operational decisions for running the hydrogen storage systems. For the data considered we observe that a fully renewable network driven by green hydrogen has a greater potential to succeed when wind generation is high. In fact the main investment priorities revealed by the model are in wind generation and in liquid hydrogen storage. This long-term storage is more valuable for taking full advantage of hydrogen than shorter-term intraday hydrogen gas storage. In addition we note that the main driver for the potential and profitability of green hydrogen lies in the electricity demand and prices as opposed to those for gas. Our model and the investment solutions proposed are robust with respect to changes in the investment costs. All in all our results show that there is potential for green hydrogen as a source of baseload support in the transition to a fully renewable-powered energy grid.
A Comprehensive Review of Sustainable Energy Systems in the Context of the German Energy Transition Part 2: Renewable Energy and Storage Technologies
Sep 2025
Publication
As a continuation of part 1 which examined the development status and system foundations of sustainable energy systems (SES) in the context of German energy transition this paper provides a comprehensive review of the core technologies enabling the development of SES. It covers recent advances in photovoltaic (PV) wind energy geo‑ thermal energy hydrogen and energy storage. Key trends include the evolution of high-efficiency solar and wind technologies intelligent control systems sector coupling through hydrogen integration and the diversification of electrochemical and mechanical storage solutions. Together these innovations are fostering a more flexible resil‑ ient and low-carbon energy infrastructure. The review further highlights the importance of system-level integration by linking generation conversion and storage to address the intermittency of renewable energy and support longterm decarbonization goals.
No more items...