China, People’s Republic
A Study of Thermoelectric Generation Coupled with Methanol Steam Reforming for Hydrogen Production
Nov 2022
Publication
Waste heat recovery was considered as a promising candidate for energy conservation and emission reduction. Methanol steam reforming was considered to be an effective means for hydrogen production because of its advantages. In this work a micro reactor was constructed and thermoelectric generation coupled with hydrogen production from methanol steam reforming was innovatively used to recycle waste heat which was simulated by hot air from a hot air gun. The waste heat was converted into electricity and hydrogen at the same time. The characteristic of thermoelectric generation coupled with methanol steam reforming was investigated. It was experimentally verified that both the hydrogen production rate and methanol conversion increased with the increasing inlet temperature but thermal efficiency increased firstly and then decreased with the increasing temperature. The methanol steam reforming could effectively maintain cold side temperature distribution of thermoelectric generation. In the case of the thermoelectric module (1) the highest temperature difference of 37 ◦C was determined and the maximum open circuit voltage of 2 V was observed. The highest methanol conversion of 64.26% was achieved at a space velocity of 0.98 h−1 when the temperature was 543 K comprehensively considering the CO content and thermal efficiency.
Safety System Design for Mitigating Risks of Intended Hydrogen Releases from Thermally Activated Pressure Relief Device of Onboard Storage
Sep 2019
Publication
All vehicular high-pressure hydrogen tanks are equipped with thermally-activated pressure relief devices (TPRDs) required by Global Technical Regulation. This safety device significantly reduces the risk of tank catastrophic rupture by venting the hydrogen pressure outside. However the released flammable hydrogen raises additional safety problems. Japan Automobile Research Institute has demonstrated that in the vehicle fire event once the TPRD opens the hydrogen fires will engulf the whole vehicle making it difficult for the drivers and passenger to evacuate from the vehicle. This paper designs a new safety system to solve the evacuation problem. The safety system includes a rotatable pressure relief device with a motor a sensory system that consists of infrared sensors ultrasonic radar and temperature sensors a central control unit and an alarm device. The new design of the pressure relief device allows the system actively adjusting the release direction towards void open space outside the vehicle to minimize the risks of hydrogen fires. The infrared sensors located at the roof of the vehicles collect info inside the vehicle and the ultrasonic radar detect the region outside the vehicle. Temperature sensors tell when to trigger the alarm and set the motor in standby mode and the central control unit determines where to rotate based on the info from the infrared sensors and ultrasonic radars. A control strategy is also proposed to operate the safety system in an appropriate way. The cost-benefit analysis show that the new safety system can significantly reduce the risks of intended hydrogen releases from onboard pressure relief devices with total cost increases by less than 1% of the vehicle cost making it a good cost-effective engineering solution.
Multi-Criteria Optimization of a Biomass-Based Hydrogen Production System Integrated With Organic Rankine Cycle
Oct 2020
Publication
Biomass-based gasification is an attractive and promising pathway for hydrogen production. In this work a biomass-based hydrogen production system integrated with organic Rankine cycle was designed and investigated to predict the performance of hydrogen production yield and electricity generation under various operating conditions. The modified equilibrium model presented desirable results for the produced syngas compositions compared with the experimental data. Hydrogen yields from four types of biomass (wood chips daily manure sorghum and grapevine pruning wastes) were compared under the same operating condition with wood chips exhibiting the maximum hydrogen yield of 11.59 mol/kg. The effects of gasification temperature equivalence ratio and steam-to-biomass ratio on the hydrogen yield and electricity generation were investigated by using the response surface method. Furthermore the system was optimized using a genetic algorithm based on the response surface model. A preferred optimal solution with a hydrogen yield of 39.31 mol/kg and an output power of 3558.08 kW (0.99 kW h/kg) was selected by the linear programming technique for multidimensional analysis of the preference method.
Quantification of Temperature Dependence of Hydrogen Embrittlement in Pipeline Steel
Feb 2019
Publication
The effects of temperature on bulk hydrogen concentration and diffusion have been tested with the Devanathan–-Stachurski method. Thus a model based on hydrogen potential diffusivity loading frequency and hydrostatic stress distribution around crack tips was applied in order to quantify the temperature’s effect. The theoretical model was verified experimentally and confirmed a temperature threshold of 320 K to maximize the crack growth. The model suggests a nanoscale embrittlement mechanism which is generated by hydrogen atom delivery to the crack tip under fatigue loading and rationalized the ΔK dependence of traditional models. Hence this work could be applied to optimize operations that will prolong the life of the pipeline.
An Intelligent Site Selection Model for Hydrogen Refueling Stations Based on Fuzzy Comprehensive Evaluation and Artificial Neural Network—A Case Study of Shanghai
Feb 2022
Publication
With the gradual popularization of hydrogen fuel cell vehicles (HFCVs) the construction and planning of hydrogen refueling stations (HRSs) are increasingly important. Taking operational HRSs in China’s coastal and major cities as examples we consider the main factors affecting the site selection of HRSs in China from the three aspects of economy technology and society to establish a site selection evaluation system for hydrogen refueling stations and determine the weight of each index through the analytic hierarchy process (AHP). Then combined with fuzzy comprehensive evaluation (FCE) method and artificial neural network model (ANN) FCE method is used to evaluate HRS in operation in China's coastal areas and major cities and we used the resulting data obtained from the comprehensive evaluation as the training data to train the neural network. So an intelligent site selection model for HRSs based on fuzzy comprehensive evaluation and artificial neural network model (FCE-ANN) is proposed. The planned HRSs in Shanghai are evaluated and an optimal site selection of the HRS is obtained. The results show that the optimal HRSs site selected by the FCE-ANN model is consistent with the site selection obtained by the FCE method and the accuracy of the FCE-ANN model is verified. The findings of this study may provide some guidelines for policy makers in planning the hydrogen refueling stations
Consequence-based Safety Distances and Mitigation Measures for Gaseous Hydrogen Refueling Stations
Oct 2010
Publication
With the rapid development of hydrogen vehicle technology and large scale fuel cell vehicle (FCV) demonstration project worldwide more hydrogen refueling stations need to be built. Safety distances of hydrogen refueling stations have always been a public concern and have become a critical issue to further implementation of hydrogen station. In this paper safety distances for 35MPa and 70MPa gaseous hydrogen refueling station are evaluated on the basis of the maximum consequences likely to occur. Four typical consequences of hydrogen release are considered in modeling: physical explosion jet fire flash fire and confined vapor cloud explosion. Results show that physical explosion and the worst case of confined vapor cloud explosion produce the longest harm effect distances for instantaneous and continuous release respectively indicating that they may be considered as leading consequences for the determination of safety distances. For both 35MPa station and 70MPa station safety measures must be implemented because the calculated safety distances of most hydrogen facilities can not meet the criteria in national code if without sufficient mitigation measures. In order to reduce the safety distances to meet the national code some mitigation measures are investigated including elevation of hydrogen facilities using smaller vessel and pipe work and setting enclosure around compressors. Results show that these measures are effective to improve safety but each has different effectiveness on safety distance reduction. The combination of these safety measures may effectively eliminate the hazard of 35MPa station however may be not enough for 70MPa station. Further improvements need to be studied for compressors inside 70MPa station.
Ordered Clustering of Single Atomic Te Vacancies in Atomically Thin PtTe2 Promotes Hydrogen Evolution Catalysis
Apr 2021
Publication
Exposing and stabilizing undercoordinated platinum (Pt) sites and therefore optimizing their adsorption to reactive intermediates offers a desirable strategy to develop highly efficient Pt-based electrocatalysts. However preparation of atomically controllable Pt-based model catalysts to understand the correlation between electronic structure adsorption energy and catalytic properties of atomic Pt sites is still challenging. Herein we report the atomically thin two-dimensional PtTe2 nanosheets with well-dispersed single atomic Te vacancies (Te-SAVs) and atomically well-defined undercoordinated Pt sites as a model electrocatalyst. A controlled thermal treatment drives the migration of the Te-SAVs to form thermodynamically stabilized ordered Te-SAV clusters which decreases both the density of states of undercoordinated Pt sites around the Fermi level and the interacting orbital volume of Pt sites. As a result the binding strength of atomically defined Pt active sites to H intermediates is effectively reduced which renders PtTe2 nanosheets highly active and stable in hydrogen evolution reaction.
Evaluation of Performance Characteristics of a Novel Hydrogen-fuelled Free-piston Engine Generator
Mar 2020
Publication
In this work we present the experimental results obtained from hydrogen fuelled spark-ignited dual piston free-piston engine generator (FPEG) prototype operated in two-stroke and four-stroke mode. The FPEG testing was successfully conducted at 3.7 compression ratio engine speed between 5 Hz and 11 Hz and with different equivalence ratios. The FPEG technical details experimental set-up and operational control are explained in detail. Performance indicators show that both equivalence ratio and engine speed affect the engine operation characteristics. For every set of specified FPEG parameters appropriate range of equivalence ratio is recommended to prevent unwanted disturbance to electric generator operation. Both two-stroke and four-stroke cycle mode were tested and the results showed different combustion characteristics with the two thermodynamic cycles. Four-stroke cycle mode could operate with indicated thermal efficiency gain up to 13.2% compared with the two-stroke cycle.
An Investigation of Gaseous Hydrogen Storage Characterizations of Mg–Y–Ni–Cu Alloys Synthesized by Melt Spinning
Aug 2018
Publication
Melt spinning was successfully utilized to prepare Mg25−xYxNi9Cu (x = 0 1 3 5 7) alloys producing nanocrystalline and amorphous structures with improved hydrogenation and dehydrogenation performances. The influence of spinning rate on hydrogenation and dehydrogenation thermodynamics and kinetics was studied in detail. XRD and TEM were utilized to characterize the alloy structures. Hydrogenation and dehydrogenation performances were investigated by Sievert apparatus DSC and TGA connected to a H2 detector. Dehydrogenation activation energies were estimated using both Arrhenius and Kissinger methods. Results show that melt spinning significantly decreases thermodynamic parameters (ΔH and ΔS) and ameliorates desorption kinetics. Dehydrogenation activation energy markedly lowers with increase in spinning rate and is the real driver of amelioration of dehydrogenation kinetics caused by increasing Y content.
Boosting Photocatalytic Hydrogen Production from Water by Photothermally Induced Biphase Systems
Feb 2021
Publication
Solar-driven hydrogen production from water using particulate photocatalysts is considered the most economical and effective approach to produce hydrogen fuel with little environmental concern. However the efficiency of hydrogen production from water in particulate photocatalysis systems is still low. Here we propose an efficient biphase photocatalytic system composed of integrated photothermal–photocatalytic materials that use charred wood substrates to convert liquid water to water steam simultaneously splitting hydrogen under light illumination without additional energy. The photothermal–photocatalytic system exhibits biphase interfaces of photothermally-generated steam/photocatalyst/hydrogen which significantly reduce the interface barrier and drastically lower the transport resistance of the hydrogen gas by nearly two orders of magnitude. In this work an impressive hydrogen production rate up to 220.74 μmol h−1 cm−2 in the particulate photocatalytic systems has been achieved based on the wood/CoO system demonstrating that the photothermal–photocatalytic biphase system is cost-effective and greatly advantageous for practical applications.
Progress in Biofuel Production from Gasification
May 2017
Publication
Biofuels from biomass gasification are reviewed here and demonstrated to be an attractive option. Recent progress in gasification techniques and key generation pathways for biofuels production process design and integration and socio-environmental impacts of biofuel generation are discussed with the goal of investigating gasification-to-biofuels’ credentials as a sustainable and eco-friendly technology. The synthesis of important biofuels such as bio-methanol bio-ethanol and higher alcohols bio-dimethyl ether Fischer Tropsch fuels bio-methane bio-hydrogen and algae-based fuels is reviewed together with recent technologies catalysts and reactors. Significant thermodynamic studies for each biofuel are also examined. Syngas cleaning is demonstrated to be a critical issue for biofuel production and innovative pathways such as those employed by Choren Industrietechnik Germany and BioMCN the Netherlands are shown to allow efficient methanol generation. The conversion of syngas to FT transportation fuels such as gasoline and diesel over Co or Fe catalysts is reviewed and demonstrated to be a promising option for the future of biofuels. Bio-methane has emerged as a lucrative alternative for conventional transportation fuel with all the advantages of natural gas including a dense distribution trade and supply network. Routes to produce H2 are discussed though critical issues such as storage expensive production routes with low efficiencies remain. Algae-based fuels are in the research and development stage but are shown to have immense potential to become commercially important because of their capability to fix large amounts of CO2 to rapidly grow in many environments and versatile end uses. However suitable process configurations resulting in optimal plant designs are crucial so detailed process integration is a powerful tool to optimize current and develop new processes. LCA and ethical issues are also discussed in brief. It is clear that the use of food crops as opposed to food wastes represents an area fraught with challenges which must be resolved on a case by case basis.
A Multi‐input and Single‐output Voltage Control for a Polymer Electrolyte Fuel Cell System Using Model Predictive Control Method
Mar 2021
Publication
Efficient and robust control strategies can greatly contribute to the reliability of fuel cell systems and a stable output voltage is a key criterion for evaluating a fuel cell system's reliability as a power source. In this study a polymer electrolyte fuel cell (PEFC) system model is developed and its performances under different operating conditions are studied. Then two different novel controllers—a proportional integral derivative (PID) controller and a model predictive control (MPC) controller—are proposed and applied in the PEFC system to control its output voltage at a desired value by regulating the hydrogen and air flow rates at the same time which features a multi‐input and single‐output control problem. Simulation results demonstrate that the developed PEFC system model is qualified to capture the system's behaviour. And both the developed PID and MPC controllers are effective at controlling the PEFC system's output voltage. While the MPC controller presents superior performance with faster response and smaller overshoot. The proposed MPC controller can be easily employed in various control applications for fuel cell systems.
Development of a Gaseous and Solid-state Hybrid System for Stationary Hydrogen Energy Storage
Jun 2020
Publication
Hydrogen can serve as a carrier to store renewable energy in large scale. However hydrogen storage still remains a challenge in the current stage. It is difficult to meet the technical requirements applying the conventional storage of compressed gaseous hydrogen in high-pressure tanks or the solid-state storage of hydrogen in suitable materials. In the present work a gaseous and solid-state (G-S) hybrid hydrogen storage system with a low working pressure below 5 MPa for a 10 kW hydrogen energy storage experiment platform is developed and validated. A Ti−Mn type hydrogen storage alloy with an effective hydrogen capacity of 1.7 wt% was prepared for the G-S hybrid hydrogen storage system. The G-S hybrid hydrogen storage tank has a high volumetric hydrogen storage density of 40.07 kg H2 m−3 and stores hydrogen under pressure below 5 MPa. It can readily release enough hydrogen at a temperature as low as −15 °C when the FC system is not fully activated and hot water is not available. The energy storage efficiency of this G-S hybrid hydrogen storage system is calculated to be 86.4%−95.9% when it is combined with a FC system. This work provides a method on how to design a G-S hydrogen storage system based on practical demands and demonstrates that the G-S hybrid hydrogen storage is a promising method for stationary hydrogen storage application.
Hydrogen Embrittlement and Improved Resistance of Al Addition in Twinning-Induced Plasticity Steel: First-Principles Study
Apr 2019
Publication
Understanding the mechanism of hydrogen embrittlement (HE) of austenitic steels and developing an effective strategy to improve resistance to HE are of great concern but challenging. In this work first-principles studies were performed to investigate the HE mechanism and the improved resistance of Al-containing austenite to HE. Our results demonstrate that interstitial hydrogen atoms have different site preferences in Al-free and Al-containing austenites. The calculated binding energies and diffusion barriers of interstitial hydrogen atoms in Al-containing austenite are remarkably higher than those in Al-free austenite indicating that the presence of Al is more favorable for reducing hydrogen mobility. In Al-free austenite interstitial hydrogen atoms caused a remarkable increase in lattice compressive stress and a distinct decrease in bulk shear and Young’s moduli. Whereas in Al-containing austenite the lattice compressive stress and the mechanical deterioration induced by interstitial hydrogen atoms were effectively suppressed.
Design and Performance of a Compact Air-Breathing Jet Hybrid-Electric Engine Coupled With Solid Oxide Fuel Cells
Feb 2021
Publication
A compact air-breathing jet hybrid-electric engine coupled with solid oxide fuel cells (SOFC) is proposed to develop the propulsion system with high power-weight ratios and specific thrust. The heat exchanger for preheating air is integrated with nozzles. Therefore the exhaust in the nozzle expands during the heat exchange with compressed air. The nozzle inlet temperature is obviously improved. SOFCs can directly utilize the fuel of liquid natural gas after being heated. The performance parameters of the engine are acquired according to the built thermodynamic and mass models. The main conclusions are as follows. 1) The specific thrust of the engine is improved by 20.25% compared with that of the traditional jet engine. As pressure ratios rise the specific thrust increases up to 1.7 kN/(kg·s−1). Meanwhile the nozzle inlet temperature decreases. However the temperature increases for the traditional combustion engine. 2) The power-weight ratio of the engine is superior to that of internal combustion engines and inferior to that of turbine engines when the power density of SOFC would be assumed to be that predicted for 2030. 3) The total pressure recovery coefficients of SOFCs combustors and preheaters have an obvious influence on the specific thrust of the engine and the power-weight ratio of the engine is strongly affected by the power density of SOFCs.
Continuous Synthesis of Few-layer MoS2 with Highly Electrocatalytic Hydrogen Evolution
Apr 2020
Publication
As one of the most promising alternative fuels hydrogen is expected with high hopes. The electrolysis of water is regarded as the cleanest and most efficient method of hydrogen production. Molybdenum disulfide (MoS2) is deemed as one of the most promising alternatives HER catalysts owing to its high catalytic activity and low cost. Its continuous production and efficient preparation become the key problems in future industrial production. In this work we first developed a continuous micro-reaction approach with high heat and mass transfer rates to synthesize few-layer MoS2 nanoplates with abundant active sites. The defective MoS2 ultrathin nanoplates exhibit excellent HER performance with an overpotential of 260 mV at a current density of 10 mA cm-2 small Tafel slope (53.6 mV dec-1) and prominent durability which are comparable to most reported MoS2 based catalysts. Considering the existence of continuous devices it’s suitable for the synthesis of MoS2 as high-performance electrocatalysts for the industrial water electrolysis. The novel preparation method may open up a new way to synthesize all two-dimension materials toward HER.
An Ammonia-Hydrogen Energy Roadmap for Carbon Neutrality: Opportunity and Challenges in China
Nov 2021
Publication
China has promised to reach the peak carbon dioxide emission (ca. 10 billion tons) by 2030 and carbon neutrality by 2060. To realize these goals it is necessary to develop hydrogen energy and fuel cell techniques. However the high cost and low intrinsic safety of high-pressure hydrogen storage limit their commercialization. NH3 is high in hydrogen content easily liquefied at low pressure and free of carbon and the technology of NH3 synthesis has been commercialized nationwide. It is worth noting that the production of NH3 in China is about 56 million tons per year accounting for 35% of worldwide production. Hence with the well established infrastructure for NH3 synthesis and transportation and the demand for clean energy in China it is feasible to develop a green and economical energy roadmap viz. “Clean low-pressure NH3 synthesis → Safe and economical NH3 storage and transportation → Carbon-free efficient NH3-H2 utilization” for low-carbon or even carbon-free energy production.<br/>Currently the academic and industrial communities in China are striving to make technological breakthroughs in areas such as photocatalytic water splitting electrocatalytic water splitting mild-condition NH3 synthesis low-temperature NH3 catalytic decomposition and indirect or direct NH3 fuel cells with significant progress.<br/>Taking full advantage of the NH3 synthesis industry and readjusting the industrial structure it is viable to achieve energy saving and emission reduction in NH3 synthesis industry (440 million tons CO2 per year) as well as promote a new energy industry and ensure national energy security. Therefore relevant academic and industrial communities should put effort on mastering the key technologies of “Ammonia-Hydrogen” energy conversion and utilization with complete self-dependent intellectual property. It is envisioned that through the establishment of “Renewable Energy-Ammonia-Hydrogen” circular economy a green technology chain for hydrogen energy industry would pose as a promising pathway to achieve the 2030 and 2060 goals.
Renewable Hydrogen Production from the Organic Fraction of Municipal Solid Waste through a Novel Carbon-negative Process Concept
Apr 2022
Publication
Bioenergy with carbon capture and storage (BECCS) is one of the prevailing negative carbon emission technologies. Ensuring a hydrogen economy is essential to achieving the carbon-neutral goal. In this regard the present study contributed by proposing a carbon negative process for producing high purity hydrogen from the organic fraction of municipal solid waste (OFMSW). This integrated process comprises anaerobic digestion pyrolysis catalytic reforming water-gas shift and pressure swing adsorption technologies. By focusing on Sweden the proposed process was developed and evaluated through sensitivity analysis mass and energy balance calculations techno-economic assessment and practical feasibility analysis. By employing the optimum operating conditions from the sensitivity analysis 72.2 kg H2 and 701.47 kg negative CO2 equivalent emissions were obtained by treating 1 ton of dry OFMSW. To achieve these results 6621.4 MJ electricity and 325 kg of steam were utilized during this process. Based on this techno-economic assessment of implementing the proposed process in Stockholm when the negative CO2 equivalent emissions are recognized as income the internal rate of return and the discounted payback period can be obtained as 26% and 4.3 years respectively. Otherwise these values will be 13% and 7.2 years.
Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers Through 2070
Mar 2020
Publication
Jeffrey Rissman,
Chris Bataille,
Eric Masanet,
Nate Aden,
William R. Morrow III,
Nan Zhou,
Neal Elliott,
Rebecca Dell,
Niko Heeren,
Brigitta Huckestein,
Joe Cresko,
Sabbie A. Miller,
Joyashree Roy,
Paul Fennell,
Betty Cremmins,
Thomas Koch Blank,
David Hone,
Ellen D. Williams,
Stephane de la Rue du Can,
Bill Sisson,
Mike Williams,
John Katzenberger,
Dallas Burtraw,
Girish Sethi,
He Ping,
David Danielson,
Hongyou Lu,
Tom Lorber,
Jens Dinkel and
Jonas Helseth
Fully decarbonizing global industry is essential to achieving climate stabilization and reaching net zero greenhouse gas emissions by 2050–2070 is necessary to limit global warming to 2 °C. This paper assembles and evaluates technical and policy interventions both on the supply side and on the demand side. It identifies measures that employed together can achieve net zero industrial emissions in the required timeframe. Key supply-side technologies include energy efficiency (especially at the system level) carbon capture electrification and zero-carbon hydrogen as a heat source and chemical feedstock. There are also promising technologies specific to each of the three top-emitting industries: cement iron & steel and chemicals & plastics. These include cement admixtures and alternative chemistries several technological routes for zero-carbon steelmaking and novel chemical catalysts and separation technologies. Crucial demand-side approaches include material-efficient design reductions in material waste substituting low-carbon for high-carbon materials and circular economy interventions (such as improving product longevity reusability ease of refurbishment and recyclability). Strategic well-designed policy can accelerate innovation and provide incentives for technology deployment. High-value policies include carbon pricing with border adjustments or other price signals; robust government support for research development and deployment; and energy efficiency or emissions standards. These core policies should be supported by labeling and government procurement of low-carbon products data collection and disclosure requirements and recycling incentives. In implementing these policies care must be taken to ensure a just transition for displaced workers and affected communities. Similarly decarbonization must complement the human and economic development of low- and middle-income countries.
Roadmap to Hybrid Offshore System with Hydrogen and Power Co-generation
Sep 2021
Publication
Constrained by the expansion of the power grid the development of offshore wind farms may be hindered and begin to experience severe curtailment or restriction. The combination of hydrogen production through electrolysis and hydrogen-to-power is considered to be a potential option to achieve the goal of low-carbon and energy security. This work investigates the competitiveness of different system configurations to export hydrogen and/or electricity from offshore plants with particular emphasis on unloading the mixture of hydrogen and electricity to end-users on land. Including the levelized energy cost and net present value a comprehensive techno-economic assessment method is proposed to analyze the offshore system for five scenarios. Assuming that the baseline distance is 10 km the results show that exporting hydrogen to land through pipelines shows the best economic performance with the levelized energy cost of 3.40 $/kg. For every 10 km increase in offshore distance the net present value of the project will be reduced by 5.69 MU$ and the project benefit will be positive only when the offshore distance is less than 53.5 km. An important finding is that the hybrid system under ship transportation mode is not greatly affected by the offshore distance. Every 10% increase in the proportion of hydrogen in the range of 70%–100% can increase the net present value by 1.43–1.70 MU$ which will increase by 7.36–7.37 MU$ under pipeline transportation mode. Finally a sensitivity analysis was carried out to analyze the wind speed electricity and hydrogen prices on the economic performance of these systems.
No more items...