China, People’s Republic
Process Path for Reducing Carbon Emissions from Steel Industry—Combined Electrification and Hydrogen Reduction
Jan 2024
Publication
This review focuses on the energy structure of iron and steel production and a feasible development path for carbon reduction. The process path and feasible development direction of carbon emission reduction in the iron and steel industry have been analyzed from the perspective of the carbon–electricity–hydrogen ternary relationship. Frontier technologies such as “hydrogen replacing carbon” are being developed worldwide. Combining the high efficiency of microwave electric-thermal conversion with the high efficiency and pollution-free advantages of hydrogen-reducing agents may drive future developments. In this review a process path for “microwave + hydrogen” synergistic metallurgy is proposed. The reduction of magnetite powder by H2 (CO) in a microwave field versus in a conventional field is compared. The driving effect of the microwave field is found to be significant and the synergistic reduction effect of microwaves with H2 is far greater than that of CO.
Recent Advances in Electrocatalysts for Seawater Splitting
Dec 2020
Publication
Water splitting is an effective strategy to produce renewable and sustainable hydrogen energy. Especially seawater splitting avoiding use of the limited freshwater resource is more intriguing. Nowadays electrocatalysts explored for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using natural seawater or saline electrolyte have been increasingly reported. To better understand the current status and challenges of the electrocatalysts for HER and OER from seawater we comprehensively review the recent advances in electrocatalysts for seawater splitting. The fundamentals challenges and possible strategies for seawater splitting are firstly presented. Then the recently reported electrocatalysts that explored for HER and OER from seawater are summarized and discussed. Finally the perspectives in the development of high-efficient electrocatalysts for seawater splitting are also proposed.
Identification of Hydrogen-Energy-Related Emerging Technologies Based on Text Mining
Dec 2023
Publication
As a versatile energy carrier hydrogen possesses tremendous potential to reduce greenhouse emissions and promote energy transition. Global interest in producing hydrogen from renewable energy sources and transporting storing and utilizing hydrogen is rising rapidly. However the high costs of producing clean hydrogen and the uncertain application scenarios for hydrogen energy result in its relatively limited utilization worldwide. It is necessary to find new promising technological paths to drive the development of hydrogen energy. As part of technological innovation emerging technologies have vital features such as prominent impact novelty relatively fast growth etc. Identifying emerging hydrogen-energy-related technologies is important for discovering innovation opportunities during the energy transition. Existing research lacks analysis of the characteristics of emerging technologies. Thus this paper proposes a method combining the latent Dirichlet allocation topic model and hydrogen-energy expert group decision-making. This is used to identify emerging hydrogen-related technology regarding two features of emerging technologies novelty and prominent impact. After data processing topic modeling and analysis the patent dataset was divided into twenty topics. Six emerging topics possess novelty and prominent impact among twenty topics. The results show that the current hotspots aim to promote the application of hydrogen energy by improving the performance of production catalysts overcoming the wide power fluctuations and large-scale instability of renewable energy power generation and developing advanced hydrogen safety technologies. This method efficiently identifies emerging technologies from patents and studies their development trends. It fills a gap in the research on emerging technologies in hydrogen-related energy. Research achievements could support the selection of technology pathways during the low-carbon energy transition.
Optimal Scheduling of an Electric-Hydrogen-Integrated Energy System Considering Virtual Energy Storage
Jan 2024
Publication
In this paper a two-layer optimization approach is proposed to facilitate the multi-energy complementarity and coupling and optimize the system configuration in an electric-hydrogen-integrated energy system (EH-IES). Firstly an EH-IES with virtual energy storage is proposed to reduce the cost of physical energy storage equipment. Secondly a two-layer optimal allocation method is proposed under a multi-timescale strategy to examine the comprehensive evaluation index of environmental protection and economy. The upper layer utilizes the NSGA-II multi-objective optimization method for system capacity allocation while the lower layer performs economic dispatch at the lowest cost. Ultimately the output includes the results of the equipment capacity allocation of the EH-IES that satisfies the reliability constraint interval and the daily scheduling results of the equipment. The results demonstrate that the electric-hydrogen-integrated energy system with the coupling of multiple energy equipment not only enhances the utilization of renewable energy sources but also reduces the usage of fossil energy and improves the system’s reliability.
Economic Analysis of Supply Chain for Offshore Wind Hydrogen Production for Offshore Hydrogen Refueling Stations
Jan 2025
Publication
In order to solve the problem of large-scale offshore wind power consumption the development of an offshore wind power hydrogen supply chain has become one of the trends. In this study 10 feasible options are proposed to investigate the economics of an offshore wind hydrogen supply chain for offshore hydrogen refueling station consumption from three aspects: offshore wind hydrogen production storage and transportation and application. The study adopts a levelized cost analysis method to measure the current and future costs of the hydrogen supply chain. It analyses the suitable transport modes for delivering hydrogen to offshore hydrogen refueling stations at different scales and distances as well as the profitability of offshore hydrogen refueling stations. The study draws the following key conclusions: (1) the current centralised wind power hydrogen production method is economically superior to the distributed method; (2) gas-hydrogen storage and transportation is still the most economical method at the current time with a cost of CNY 32.14/kg which decreases to CNY 13.52/kg in 2037 on a par with the cost of coal-based hydrogen production using carbon capture technology; and (3) at the boundaries of an operating load factor of 70% and a selling price of CNY 25/kg the offshore hydrogen refueling station. The internal rate of return (IRR) is 21% showing good profitability; (4) In terms of the choice of transport mode for supplying hydrogen to the offshore hydrogen refueling station gas-hydrogen ships and pipeline transport will mainly be used in the near future while liquid organic hydrogen carriers and synthetic ammonia ships can be considered in the medium to long term.
Comparative Assessment of Hydrogen and Methanol-Derived Fuel Co-Combustion for Improved Natural Gas Boiler Performance and Sustainability
Jan 2025
Publication
Faced with a global consensus on net-zero emissions the use of clean fuels to entirely or substantially replace traditional fuels has emerged as the industry’s primary development direction. Alcohol–hydrogen fuels primarily based on methanol are a renewable and sustainable energy source. This research focuses on energy sustainability and presents a boiler fuel blending system that uses methanol–hydrogen combinations. This system uses the boiler’s waste heat to catalytically decompose methanol into a gas mostly consisting of H2 and CO which is then co-combusted with the original fuel to improve thermal efficiency and lower emissions. A comparative experimental study considering natural gas (NG) blending with hydrogen and dissociated methanol gas (DMG) was carried out in a small natural gas boiler. The results indicate that with a controlled mixed fuel flow of 10 m3/h and an excess air coefficient of 1.2 a 10% hydrogen blending ratio maximizes the boiler’s thermal efficiency (ηt) resulting in a 3.5% increase. This ratio also results in a 1% increase in NOx emissions a 25% decrease in HC emissions and a 5.66% improvement in the equivalent economics (es). Meanwhile blending DMG at 15% increases the boiler’s ηt by 3% reduces NOx emissions by 13.8% and HC emissions by 20% and improves the es by 8.63%. DMG as a partial substitute for natural gas outperforms hydrogen in various aspects. If this technology can be successfully applied and promoted it could pave a new path for the sustainable development of energy in the boiler sector.
Optimizing Flexibility and Low-carbon Emissions in Integrated Energy Systems: A Two-stage Robust Optimization Model Invrporating Hydrogen and Carbon Trading
Jan 2025
Publication
Source-load output uncertainty poses significant risks to the stable operation of Integrated Energy Systems (IESs). To ensure safe and stable system operation while optimizing the balance among robustness economic viability and low-carbon emissions this paper presents a two-stage robust optimal scheduling model for IESs. This model is supported by hydrogen-containing electric dual-energy conversion characteristics under source-load uncer tainty. Additionally to promote the low-carbon characteristics of the system a ladder carbon trading mechanism is introduced on the source side of the carbon source equipment. Furthermore the integration of hydrogen energy enhances the clean characteristics of source-side multi-energy coupling. The proposed utilization mode Power-to-Hydrogen Hydrogen-to-Power Hydrogen Energy Storage and Hydrogen Load (P2H-H2P-HES-HL) allows for bidirectional conversion thereby increasing the flexibility and responsiveness of overall system scheduling. Finally to ensure that the model closely reflects actual operational and scheduling conditions a twophase robust approach is employed to address source-load uncertainties. This approach is solved iteratively using the linear transformation of the Karush-Kuhn-Tucker (KKT) conditions and the Column-and-Constraint Gener ation (C&CG) algorithm. The results demonstrate that the proposed model significantly enhances the scheduling capability of the system in coping with uncertainty thereby effectively ensuring its flexibility and security
The Development, Current Status and Challenges of Salt Cavern Hydrogen Storage Technology in China
Feb 2025
Publication
This paper provides a systematic visualization of the development current status and challenges of salt cavern hydrogen storage technology based on the relevant literature from the past five years in the Web of Science Core Collection database. Using VOSviewer (version 1.6.20) and CiteSpace software (advanced version 6.3.R3) this study analyzes the field from a knowledge mapping perspective. The findings reveal that global research hotspots are primarily focused on multi-energy collaboration integration of renewable energy systems and exploration of commercialization highlighting the essential role of salt cavern hydrogen storage in driving the energy transition and promoting sustainable development. In China research mainly concentrates on theoretical innovations and technological optimizations to address complex geological conditions. Despite the rapid growth in the number of Chinese publications unresolved challenges remain such as the complexity of layered salt rock and thermodynamic coupling effects during highfrequency injection and extraction as well as issues concerning permeability and microbial activity. Moving forward China’s salt cavern hydrogen storage technology should focus on strengthening engineering practices suited to local geological conditions and enhancing the application of intelligent technologies thereby facilitating the translation of theoretical research into practical applications.
A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants
Jul 2022
Publication
Proton-exchange membrane fuel cells (PEMFCs) are regarded as promising alternatives to internal combustion engines (ICEs) to reduce pollution. Recent research on PEMFCs focuses on achieving higher power densities reducing the refueling time mitigating the final price and decreasing the degradations to facilitate the commercialization of hydrogen mobility. The design of bipolar plates and compression kits in addition to their coating can effectively improve performance increase durability and support water/thermal management. Past reviews usually focused on the specific aspect which can hardly provide readers with a complete picture of the key challenges facing and advances in the long-term performance of PEMFCs. This paper aims to deliver a comprehensive source to review from both experimental analytical and numerical viewpoints design challenges degradation modeling protective coatings for bipolar plates and key operational challenges facing and solutions to the stack to prevent contamination. The significant research gaps in the long-term performance of PEMFCs are identified as (1) improved bipolar-plate design and coating (2) the optimization of the design of sealing and compression kits to reduce mechanical stresses and (3) stack degradation regarding fuel contamination and dynamic operation.
Long-Duration Energy Storage: A Critical Enabler for Renewable Integration and Decarbonization
Jan 2025
Publication
This paper focuses on the critical role of long-duration energy storage (LDES) technologies in facilitating renewable energy integration and achieving carbon neutrality. It presents a systematic review of four primary categories: mechanical energy storage chemical energy storage electrochemical energy storage and thermal energy storage. The study begins by analyzing the technical advantages and geographical constraints of pumped hydro energy storage (PHES) and compressed air energy storage (CAES) in high-capacity applications. It then explores the potential of hydrogen and synthetic fuels for long-duration clean energy storage. The section on electrochemical energy storage highlights the high energy density and flexible scalability of lithium-ion batteries and redox flow batteries. Finally the paper evaluates innovative advancements in large-scale thermal energy storage technologies including sensible heat storage latent heat storage and thermochemical heat storage. By comparing the performance metrics application scenarios and development prospects of various energy storage technologies this work provides theoretical support and practical insights for maximizing renewable energy utilization and driving the sustainable transformation of global energy systems.
Deep Reinforcement Learning Based Optimal Operation of Low-Carbon Island Microgrid with High Renewables and Hybrid Hydrogen–Energy Storage System
Jan 2025
Publication
Hybrid hydrogen–energy storage systems play a significant role in the operation of islands microgrid with high renewable energy penetration: maintaining balance between the power supply and load demand. However improper operation leads to undesirable costs and increases risks to voltage stability. Here multi-time-scale scheduling is developed to reduce power costs and improve the operation performance of an island microgrid by integrating deep reinforcement learning with discrete wavelet transform to decompose and mitigate power fluctuations. Specifically in the day-ahead stage hydrogen production and the hydrogen blending ratio in gas turbines are optimized to minimize operational costs while satisfying the load demands of the island. In the first intraday stage rolling adjustments are implemented to smooth renewable energy fluctuations and increase system stability by adjusting lithium battery and hydrogen production equipment operations. In the second intraday stage real-time adjustments are applied to refine the first-stage plan and to compensate for real-time power imbalances. To verify the proposed multi-stage scheduling framework real-world island data from Shanghai China are utilized in the case studies. The numerical simulation results demonstrate that the proposed innovative optimal operation strategy can simultaneously reduce both the costs and emissions of island microgrids.
Recent Trends in Transition Metal Phosphide (TMP)-Based Seawater Electrolysis for Hydrogen Evolution
Sep 2023
Publication
Large-scale hydrogen (H2 ) production is an essential gear in the future bioeconomy. Hydrogen production through electrocatalytic seawater splitting is a crucial technique and has gained considerable attention. The direct seawater electrolysis technique has been designed to use seawater in place of highly purified water which is essential for electrolysis since seawater is widely available. This paper offers a structured approach by briefly describing the chemical processes such as competitive chloride evolution anodic oxygen evolution and cathodic hydrogen evolution that govern seawater electrocatalytic reactions. In this review advanced technologies in transition metal phosphide-based seawater electrolysis catalysts are briefly discussed including transition metal doping with phosphorus the nanosheet structure of phosphides and structural engineering approaches. Application progress catalytic process efficiency opportunities and problems related to transition metal phosphides are also highlighted in detail. Collectively this review is a comprehensive summary of the topic focusing on the challenges and opportunities.
Gas Crossover Predictive Modelling Using Artificial Neural Networks Based on Original Dataset Through Aspen Custom Modeler for Proton Exchange Membrane Electrolyte System
Sep 2023
Publication
Proton exchange membrane electrolyzer cell (PEMEC) will play a central role in future power-to-H2 plants. Current research focuses on the materials and operation parameters. Setting up experiments to explore operational accident scenarios about safety feasibility is not always practical. This paper focuses on building mathematical and prediction models of hydrogen and oxygen mixing scenarios of PEMEC. A mathematical model of the PEMEC device was customized in the Aspen Custom Model (ACM) software and integrated various critical Physico-chemical phenomena as the original data set for the prediction model. The results of the mathematical simulation verified the experimental results. The prediction model proposes an artificial neural network (ANN) framework to predict component distribution in the gas stream to prevent hydrogen-oxygen explosion scenarios. The presented approach by training ANN to 1000 sets of hydrogen-oxygen mixing simulation data from ACM is applicable to bypass tedious and non-smooth systems of equations for PEMEC.
Decarbonizing the Future for the Transportation and Aviation Industries: Green Hydrogen as the Sustainable Fuel Solution
Jun 2025
Publication
The pressure to move to sustainable energy sources is obvious in today's fast changing energy environment. In this context green hydrogen appears as a beacon of hope with the potential to reinvent the paradigms of energy consumption particularly in the transportation and aviation sectors. Hydrogen has long been intriguing owing to its unique characteristics. It is not only an energy transporter; it has the power to alter the game. Its growing significance is due to its capacity to decarbonize energy generation. Traditional hydrogen generation techniques have contributed considerably to world CO2 emissions accounting for over 2% of total emissions. This environmental problem is successfully addressed by the development of green hydrogen which is created from renewable energy sources. The International Energy Agency (IEA) predicts a 25 to 30 percent increase in global energy consumption by 2040 which is a very grim scenario. If continue to rely on coal and oil this growing demand will result in greater CO2 emissions exacerbating climate change's consequences. In this situation green hydrogen is not only an option but a need. Because green hydrogen has properties with conventional fuels it can be simply integrated into current infrastructure. This harmonic integration ensures that the shift to hydrogen-based solutions in these sectors would not demand a complete redesign of the present systems assuring cost-effectiveness and practicality. However like with any energy source green hydrogen has obstacles. Its combustibility and probable explosiveness have been cited as causes for concern. However developments in safety measures have successfully mitigated these dangers ensuring that hydrogen may be used safely and efficiently across various applications. A further difficulty is its energy density particularly in comparison to conventional fuels. While its energy-to-weight ratio may be good its bulk poses challenges particularly in the aviation industry where space is at a premium. Beyond its direct use as a fuel green hydrogen has potential in auxiliary capacities. It may be used as a dependable backup energy source during power outages as well as in a variety of different sectors and uses ranging from manufacturing to residential. Green hydrogen's adaptability demonstrates its potential to infiltrate all sectors of our economy. Storage is an important enabler for broad hydrogen use. Effective hydrogen storage technologies guarantee not only its availability but also its viability as a source of energy. Current research and advancements in this field are encouraging which strengthens the argument for green hydrogen. At conclusion green hydrogen is in the vanguard of sustainable energy solutions particularly for the transportation and aviation industries. In our collaborative quest of a sustainable future its unique features and environmental advantages make it a vital asset. As we explore further into the complexities of green hydrogen in this publication we want to shed light on its potential obstacles and future route.
An Experimental Investigation of Hydrogen Production through Biomass Electrolysis
Jan 2024
Publication
This work investigated hydrogen production from biomass feedstocks (i.e. glucose starch lignin and cellulose) using a 100 mL h-type proton exchange membrane electrolysis cell. Biomass electrolysis is a promising process for hydrogen production although low in technology readiness level but with a series of recognised advantages: (i) lower-temperature conditions (compared to thermochemical processes) (ii) minimal energy consumption and low-cost post-production (iii) potential to synthesise high-volume H2 and (iv) smaller carbon footprint compared to thermochemical processes. A Lewis acid (FeCl3 ) was employed as a charge carrier and redox medium to aid in the depolymerisation/oxidation of biomass components. A comprehensive analysis was conducted measuring the H2 and CO2 emission volume and performing electrochemical analysis (i.e. linear sweep voltammetry and chronoamperometry) to better understand the process. For the first time the influence of temperature on current density and H2 evolution was studied at temperatures ranging from ambient temperature (i.e. 19 ◦C) to 80 ◦C. The highest H2 volume was 12.1 mL which was produced by FeCl3 -mediated electrolysis of glucose at ambient temperature which was up to two times higher than starch lignin and cellulose at 1.20 V. Of the substrates examined glucose also showed a maximum power-to-H2 -yield ratio of 30.99 kWh/kg. The results showed that hydrogen can be produced from biomass feedstock at ambient temperature when a Lewis acid (FeCl3 ) is employed and with a higher yield rate and a lower electricity consumption compared to water electrolysis.
Optimization of the Joint Operation of an Electricity–Heat– Hydrogen–Gas Multi-Energy System Containing Hybrid Energy Storage and Power-to-Gas–Combined Heat and Power
Jun 2024
Publication
With the continuous development of hydrogen storage systems power-to-gas (P2G) and combined heat and power (CHP) the coupling between electricity–heat–hydrogen–gas has been promoted and energy conversion equipment has been transformed from an independent operation with low energy utilization efficiency to a joint operation with high efficiency. This study proposes a low-carbon optimization strategy for a multi-energy coupled IES containing hydrogen energy storage operating jointly with a two-stage P2G adjustable thermoelectric ratio CHP. Firstly the hydrogen energy storage system is analyzed to enhance the wind power consumption ability of the system by dynamically absorbing and releasing energy at the right time through electricity–hydrogen coupling. Then the two-stage P2G operation process is refined and combined with the CHP operation with an adjustable thermoelectric ratio to further improve the low-carbon and economic performance of the system. Finally multiple scenarios are set up and the comparative analysis shows that the addition of a hydrogen storage system can increase the wind power consumption capacity of the system by 4.6%; considering the adjustable thermoelectric ratio CHP and the twostage P2G the system emissions reduction can be 5.97% and 23.07% respectively and the total cost of operation can be reduced by 7.5% and 14.5% respectively.
Thermodynamic and Techno-Economic Performance Comparison of Methanol Aqueous Phase Reforming and Steam Reforming for Hydrogen Production
Dec 2024
Publication
Methanol which can be derived from sustainable energy sources such as biomass solar power and wind power is widely considered an ideal hydrogen carrier for distributed and mobile hydrogen production. In this study a comprehensive comparison of the thermodynamic and techno-economic performance of the aqueous phase reforming (APR) and steam reforming (SR) of methanol was conducted using Aspen Plus and CAPCOST software to evaluate the commercial feasibility of the APR process. Thermodynamic analysis based on the Gibbs free energy minimization method reveals that while APR and SR have similar energy demands APR achieves higher energy efficiency by avoiding losses from evaporation and compression. APR typically operates at higher pressures and lower temperatures compared to SR suppressing CO formation and increasing hydrogen fraction but reducing methanol single-pass conversion. A techno-economic comparison of APR and SR for a distributed hydrogen production system with a 50 kg/h hydrogen output shows that although APR requires higher fixed operating costs and annual capital charges it benefits from lower variable operating costs. The minimum hydrogen selling price for APR was calculated to be 7.07 USD/kg compared to 7.20 USD/kg for SR. These results suggest that APR is a more economically viable alternative to SR for hydrogen production.
Numerical Simulation and Field Experimental Study of Combustion Characteristics of Hydrogen-Enriched Natural Gas
Jun 2024
Publication
For the safe and efficient utilization of hydrogen-enriched natural gas combustion in industrial gas-fired boilers the present study adopted a combination of numerical simulation and field tests to investigate its adaptability. Firstly the combustion characteristics of hydrogen-enriched natural gas with different hydrogen blending ratios and equivalence ratios were evaluated by using the Chemkin Pro platform. Secondly a field experimental study was carried out based on the WNS2- 1.25-Q gas-fired boiler to investigate the boiler’s thermal efficiency heat loss and pollutant emissions after hydrogen addition. The results show that at the same equivalence ratio with the hydrogen blending ratio increasing from 0% to 25% the laminar flame propagation speed of the fuel increases the extinction strain rate rises and the combustion limit expands. The laminar flame propagation speed of premixed methane/air gas reaches the maximum value when the equivalence ratio is 1.0 and the combustion intensity of the flame is the highest at this time. In the field tests as the hydrogen blending ratio increases from 0% to nearly 10% with the increasing excess air ratio the boiler’s thermal efficiency decreases as well as the NOx emission. This indicates that there exists a tradeoff between the boiler thermal efficiency and NOx emission in practice.
Cooperative Boron and Vanadium Doping of Nickel Phosphides for Hydrogen Evolution in Alkaline and AnionExchange Membrane Water/Seawater Electrolyzers
Mar 2023
Publication
Developing low-cost and high-performance transition metal-based electro-catalysts is crucial for realizing sustainable hydrogen evolution reaction (HER)in alkaline media. Here a cooperative boron and vanadium co-doped nickelphosphide electrode (B V-Ni2P) is developed to regulate the intrinsic elec-tronic configuration of Ni2P and promote HER processes. Experimental andtheoretical results reveal that V dopants in B V-Ni2P greatly facilitate the dis-sociation of water and the synergistic effect of B and V dopants promotes thesubsequent desorption of the adsorbed hydrogen intermediates. Benefitingfrom the cooperativity of both dopants the B V-Ni2P electrocatalyst requires alow overpotential of 148 mV to attain a current density of −100 mA cm−2 withexcellent durability. The B V-Ni2P is applied as the cathode in both alkalinewater electrolyzers (AWEs) and anion exchange membrane water electrolyzers(AEMWEs). Remarkably the AEMWE delivers a stable performance to achieve500 and 1000 mA cm−2 current densities at a cell voltage of 1.78 and 1.92 Vrespectively. Furthermore the developed AWEs and AEMWEs also demon-strate excellent performance for overall seawater electrolysis.
Origin and Evolution of Hydrogen-rich Gas Discharges from a Hot Spring in the Eastern Coastal Area of China
Jan 2020
Publication
Unlike the typical low-temperature (< 150 °C) continental geothermal systems usually characterized by high N2 CH4 and CO2 concentrations but a trace H2 concentration the sandstone-dominated Jimo hot spring on China's eastern coast exhibits: (1) abnormally high H2 concentrations (2.4–12.5 vol%) and H2/CH4 (up to 46.5); (2) depleted δD-H2 (−822 to −709‰) comparable to the Kansas hot springs near the Mid-Continent rift system with the most depleted δD-H2 (−836 to −740‰) recorded in nature; and (3) dramatic gas concentration and isotope ratio variations within an area of 0.2 km2 . Gas chemistry and H-C-He-Ne isotope ratios are studied with reference to published H2 isotope data from various systems. The origin of the gas is most likely attributed to: (a) allochthonous abiotic H2 generated by the reduction of water and oxidation of FeII-rich pyroxene and olivine (serpentinization) in the basalt located 2 km away under near-surface conditions and migration to the deep sandstone reservoir; (b) primary thermogenic CH4 produced in the sandstone; (c) mixing with a considerable amount of microbial H2 from shallow fresh and marine sediments; and (d) biotic CH4 with typical abiotic signatures resulting from isotope exchanges with fluids high in H2/CH4 and CO2/CH4 ratios. Allochthonous abiotic H2 in a sandstone-dominated continental geothermal system and massive microbial fermentation-based H2 production in shallow fresh and residual marine sediments with insignificant but differential consumption activity are highlighted. The published hydrogen isotope ratios for H2 produced under various natural geological environmental and experimental conditions have been collected systematically to provide a fundamental framework and an initial tool for restricting the dominant origin of H2.
No more items...