Algeria
Assessment of the Economic Viability, Environmental, and Social Impacts of Green Hydrogen Production: An Algerian Case Study
Aug 2024
Publication
The impacts of climate change are real and in many parts of the world testify to its harsh reality including rampant extreme weather events droughts heat wildfires and flooding which have recorded in places which have not experienced them in recent memory. In the quest to avert such events there is a growing awareness and demand for sustainable processes and operations. Today sustainability encompasses a balance between ecological footprint and human development index taking into consideration economics the green environment safety quality ethics diversity and inclusion (D&I) and communities. This article presents some steps that have been taken by Algeria to balance energetic autonomy and sustainable development and a case study on green hydrogen production employing membrane processes. Algeria’s objective to join the global fight against climate change is to develop its green hydrogen base. Given its resources including available solar and wind power seawater desalination plants building capacity and its favorable location it is developing its green hydrogen economy to supply hydrogen especially to Europe. This presents an opportunity for other developing nations especially in Africa to gain from this experience.
The Evolution of Green Hydrogen in Renewable Energy Research: Insights from a Bibliometric Perspective
Dec 2024
Publication
Green hydrogen generated from water through renewable energies like solar and wind is a key player in sus tainable energy. It only produces water when used making it a clean energy source. However the inconsistent nature of solar and wind energy highlights the need for storage solutions where green hydrogen is promising. This study uniquely combines green hydrogen (GH) and renewable energy (RE) domains using a comprehensive bibliometric approach covering 2018–2022. It identifies emerging trends collaboration networks and key contributors that shape the global landscape of GH research. Our findings show a significant yearly growth in this research field averaging 93.56 %. The study also identifies China Germany India and Italy as leaders among 76 countries involved in this area. Research trends have shifted from technical details to social and economic factors. Given the increasing global commitment to achieving carbon neutrality understanding the evolution and integration of GH within RE systems is essential for guiding future research policy-making and technology development. The analysis categorizes the research into seven main themes focusing on green hydrogen’s role in energy transition and storage. Other vital topics include improving hydrogen production methods assessing its climate impact examining its environmental benefits and exploring various production techniques like water electrolysis and photocatalysis. Our analysis reveals a 93.56 % annual growth rate in GH research highlighting key challenges in storage integration and policy development and offering a roadmap for future studies. The study highlights areas needing more exploration such as better storage methods integration with existing energy infrastructures risk management and policy development. The advancement of green hydrogen as a sustainable energy solution depends on innovative research international collaboration and supportive policy frameworks.
Collective Hydrogen Stand-alone Renewable Energy Systems for Buildings in Spain. Towards the Self-sufficiency
May 2024
Publication
The article examines the feasibility of implementing standalone hydrogen-based renewable energy systems in Spanish residential buildings specifically analyzing the optimization of a solar-battery and solar-hydrogen system for a building with 20 dwellings in Spain. The study initially assesses two standalone setups: solarbattery and solar-hydrogen. Subsequently it explores scenarios where these systems are connected to the grid to only generate and sell surplus energy. A scenario involving grid connection for self-consumption without storage serves as a benchmark for comparison. All system optimizations are designed to meet energy demands without interruptions while minimizing costs as determined by a techno-economic analysis. The systems are sized using custom software that incorporates an energy management system and employs the Jaya algorithm for optimization. The findings indicate that selling surplus energy can be economically competitive and enhance the efficiency of grid-connected self-consumption systems representing the study’s main innovation. The conclusion highlights the economic and technical potential of an autonomous hybrid energy system that includes hydrogen with the significant remaining challenge being the development of a regulatory framework to support its technical feasibility in Spain.
Predictive URANS/PDF Modeling of Unsteady-State Phenomena in Turbulent Hydrogen–Air Flames
Sep 2025
Publication
The escalating global demand for primary energy—still predominantly met by conventional carbon-based fuels—has led to increased atmospheric pollution. This underscores the urgent need for alternative energy strategies capable of reducing carbon emissions while meeting global energy requirements. Hydrogen as a clean combustible fuel offers a promising alternative to hydrocarbons producing neither soot CO2 nor unburned hydrocarbons. Although nitrogen oxides (NOx) are the primary combustion by-products their formation can be mitigated by controlling flame temperature. This study investigates the viability of hydrogen as a clean energy vector by simulating an unsteady turbulent non-premixed hydrogen jet flame interacting with an air co-flow. The numerical simulations employ the Unsteady Reynolds-Averaged Navier–Stokes (URANS) framework for efficient and accurate prediction of transient flow behavior. Turbulence is modeled using the Shear Stress Transport (SST k-ω) model which enhances accuracy in high Reynolds number reactive flows. The combustion process is described using a presumed Probability Density Function (PDF) model allowing for a statistical representation of turbulent mixing and chemical reaction. The simulation results are validated by comparison with experimental temperature and mixture fraction data demonstrating the reliability and predictive capability of the proposed numerical approach.
Modeling and Experimental Approach of Membrane and Diaphragm Sono-electrolytic Production of Hydrogen
Oct 2025
Publication
This study evaluates the performance of three anion-exchange membranes (FAS-50 AMX Fujifilm-AEM) and a diaphragm separator (Zirfon® UTP 500) in alkaline water sono-electrolysis using a 25 % KOH electrolyte at ambient temperature. Energy efficiency hydrogen production kinetics and membrane stability were assessed experimentally and through modeling. Among the tested separators Zirfon achieved the highest energy efficiency outperforming AEM AMX and FAS-50. Hydrogen production rates under silent conditions ranged from 2.55 µg/s (AEM) to 2.92 µg/s (FAS-50) while sonication (40 kHz 60 W) increased rates by 0.03–0.12 µg/s with the strongest relative effect observed for FAS-50 (≈4.0 % increase). By contrast Zirfon and AEM showed slight efficiency reductions (0.5–2 %) under ultrasound due to their higher structural resistance. Ion-exchange capacity tests confirmed significant degradation of polymeric membranes (IEC losses of 60–90 %) while Zirfon maintained stability in 25 % KOH. Modeling results showed that the diaphragm resistance was dominated by the ohmic losses (55–86 %) with ultrasound reducing bubble coverage and associated resistance only marginally (<0.02 V). Overall Zirfon demonstrated superior stability and efficiency for long-term operation while ultrasound primarily enhanced hydrogen evolution kinetics in mechanically weaker polymeric membranes.
Feasibility and Sensitivity Analysis of an Off-Grid PV/Wind Hybrid Energy System Integrated with Green Hydrogen Production: A Case Study of Algeria
Nov 2025
Publication
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the technoeconomic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer fuel cell and hydrogen storage) to supply both electricity and hydrogen to decentralized sites in Algeria. Using HOMER Pro five representative Algerian regions were analyzed accounting for variations in solar irradiation wind speed and groundwater availability. A deferrable water-extraction and treatment load was incorporated to model the water requirements of the electrolyzer. In addition a comprehensive sensitivity analysis was conducted on solar irradiation wind speed and the capital costs of PV panels and wind turbines to capture the effects of renewable resource and investment cost fluctuations. The results indicate significant regional variation with the levelized cost of energy (LCOE) ranging from 0.514 to 0.868 $/kWh the levelized cost of hydrogen (LCOH) between 8.31 and 12.4 $/kg and the net present cost (NPC) between 10.28 M$ and 17.7 M$ demonstrating that all cost metrics are highly sensitive to these variations.
No more items...