Finland
Hydrogen Direct Reduced Iron Melting in an Electric Arc Furnace: Benefits of In Situ Monitoring
Oct 2025
Publication
The transition toward environmentally friendly steelmaking using hydrogen direct reduced iron as feed material in electric arc furnaces will eventually require process adjustments due to changes in the pellet properties when compared to e.g. blast furnace pellets. To this end the melting of hydrogen direct reduced iron pellets with 68 and 100% reduction degrees and Fe content of 67.24% was investigated in a laboratory-scale electric arc furnace. The presence of iron oxide-rich slag had a significant effect on the arc movement on the melt and an inhibiting effect on iron evaporation. The melting was monitored with video recording and optical emission spectroscopy. The videos were used to monitor the melting behavior whereas optical emissions revealed iron gangue elements and hydrogen from the pellets radiating in the plasma. Furthermore the flow of the melt is well seen in the videos as well as the movement of slag droplets on the melt surface. After the experiments the metal had silica-rich inclusions whereas slag had mostly penetrated into the crucible. The most notable differences in melting behavior can be attributed to the iron oxide-rich slag its interaction with the arc and penetration into the crucible and how it affects the arc movement and heat transfer.
Cruel Utopia of the Seas? Multiple Risks Challenge the Singular Hydrogen Hype in Finnish Maritime Logistics
Oct 2025
Publication
To address the global climate crisis maritime logistics are undergoing a transition away from fossil-based energy sources. The transition is envisaged to be both green (involving renewables) and digital (involving various kinds of digitalization). Much of the hope rests on the new hydrogen economy involving the build-up of infrastructure for hydrogen-derived alternative fuels such as methanol and ammonia. Indeed the new hydrogen economy is often portrayed as set to revolutionize maritime transport. The hope behind the hype reflects a belief in the performativity of hypes: some technological phenomenon will eventually materialise in innovation and business practices. In this paper we critically analyse the current hydrogen hype in the field of Finnish maritime logistics as a paradigmatic case of performative techno-optimism. Based on causal network analysis and thematic analysis of expert interviews and workshop data we argue that the phenomenon of performative techno-optimism is more nuanced than hitherto presented in the related literature. We showcase a variety of stances along a spectrum ranging from radical optimism to radical pessimism. Furthermore our causal network analysis indicates that the current green and digital transition of maritime transport is caught in a systemic catch-22: transitioning to alternative fuels in maritime logistics faces a lock-in of between overly cautious demand for alternative fuels leading to overly cautious investment in supply which only secures the modest demand. Finally our thematic analysis of techno-optimist stances suggests the following two major ways out of the systemic dilemma: large-scale technological innovations and global regulatory solutions.
Accelerated Numerical Simulations of Hydrogen Flames: Open-source Implementation of an Advanced Diffusion Model Library in OpenFOAM
Oct 2025
Publication
Here the OpenFOAM software with the dynamic load balancer library DLBFoam is investigated for computational fluid dynamics (CFD) simulations of different hydrogen (H2 ) flames. The benefits of DLBFoam for hydrogen have not been thoroughly investigated in the past. To explore this a new open-source diffusion model library FickianTransportFoam is implemented in this study. FickianTransportFoam includes species-specific constant Lewis number and mixture-averaged models with correction velocity to account for preferential diffusion. The model is first verified for one-dimensional (1D) premixed and non-premixed counterflow flames. Additionally four hydrogen/air flames are explored: (1) two-dimensional (2D) laminar freely propagating premixed flame (2) 2D axisymmetric laminar non-premixed jet flame (3) three-dimensional (3D) turbulent non-premixed swirling flame and (4) 3D turbulent premixed swirling flame. The main results and achievements regarding the implemented transport models are as follows. First the results from 2D freely propagating flame demonstrated thermodiffusively unstable flame formation using the mixture averaged model. The analytical and numerical dispersion relationships agree well for the linear instability growth phase. Second the model functionality is demonstrated for a laminar 2D jet case with conjugate heat transfer. Furthermore validation and grid sensitivity studies for the 3D turbulent flames are carried out. Third the computational benchmark for each configuration indicates a factor of ∼10-100 speed-up when utilizing DLBFoam. Finally the test cases and source codes for FickianTransportFoam are openly shared.
No more items...