Lithuania
The Concept of an Infrastructure Location to Supply Buses with Hydrogen: A Case Study of the West Pomeranian Voivodeship in Poland
Jun 2025
Publication
The growing energy crisis and increasing threat of climate change are driving the need to take action regarding the use of alternative fuels in transport including public transport. Hydrogen is undoubtedly a fuel which is environmentally friendly and constitutes an alternative to fossil fuels. The wider deployment of hydrogen-powered vehicles involves the need to adapt infrastructure to support the operation of these vehicles. Such infrastructure includes refuelling stations for hydrogen-powered vehicles. The widespread use of hydrogen-powered vehicles is dependent on the development of a network of hydrogen refuelling stations. The aim of this article is to propose the conceptual location of infrastructure for fuelling public transport vehicles with hydrogen in selected cities of the West Pomeranian Voivodeship in particular the cities of Szczecin and Koszalin. The methodology used to determine the number of refuelling stations is described and the concept of the location for the refuelling stations has been proposed. Based on a set assumptions it was stated that two stations may be located in the Voivodeship in 2025 and seven stations in 2040. The research results will be of interest to infrastructure developers public transport companies and municipalities involved in making decisions related to the purchase and operation of hydrogen-powered buses.
Cutting-edge Advances in Hydrogen Applications for the Medical and Pharmaceutical Industries
Oct 2025
Publication
The adoption of clean hydrogen is expected to transform the global energy landscape reducing greenhouse gas emissions bridging gaps in renewable energy integration and driving innovation across multiple sectors. In the medical and pharmaceutical industries hydrogen offers unique opportunities for transformative progress. This review critically examines recent advances in three domains: hydrogen fuel cells as reliable scalable and sustainable energy solutions for hospitals; molecular hydrogen as a therapeutic and preventive medical gas particularly for brain disorders; and hydrogenation technologies for the efficient and sustainable pharmaceutical production. Despite encouraging advancements widespread adoption remains limited by economic constraints regulatory gaps and limited clinical evidence. Addressing these barriers through technological innovation largescale studies and life-cycle sustainability assessments is essential to translate hydrogen’s full potential into clinical and industrial practice. Responsible adoption of green hydrogen is poised to reshape the clinical approach to global health and enhance the quality of life for people worldwide.
Modeling Hydrogen-Assisted Combustion of Liquid Fuels in Compression-Ignition Engines Using a Double-Wiebe Function
Oct 2025
Publication
This article discusses the potential of using the double-Wiebe function to model combustion in a compression-ignition engine fueled by diesel fuel or its substitutes such as hydrotreated vegetable oil (HVO) and rapeseed methyl ester (RME) and hydrogen injected into the engine intake manifold. The hydrogen amount ranged from 0 to 35% of the total energy content of the fuels burned. It was found that co-combustion of liquid fuel with hydrogen is characterized by two distinct combustion phases: premixed and diffusion combustion. The premixed phase occurring just after ignition is characterized by a rapid combustion rate which increases with an increase in hydrogen injected. The novelty in this work is the modified formula for a double-Wiebe function and the proposed parameters of this function depending on the amount of hydrogen added for co-combustion with liquid fuel. To model this combustion process the modified double-Wiebe function was proposed which can model two phases with different combustion rates. For this purpose a normalized HRR was calculated and based on this curve coefficients for the double-Wiebe function were proposed. Satisfactory consistency with the experiment was achieved at a level determined by the coefficient of determination (R-squared) of above 0.98. It was concluded that the presented double-Wiebe function can be used to model combustion in 0-D and 1-D models for fuels: RME and HVO with hydrogen addition.
No more items...