Qatar
It Is Not the Same Green: A Comparative LCA Study of Green Hydrogen Supply Network Pathways
Jul 2024
Publication
Green hydrogen (H2 ) a promising clean energy source garnering increasing attention worldwide can be derived through various pathways resulting in differing levels of greenhouse gas emissions. Notably Green H2 production can utilize different methods such as integrating standard photovoltaic panels thermal photovoltaic or concentrated photovoltaic thermal collectors with electrolyzers. Furthermore it can be conditioned to different states or carriers including liquefied H2 compressed H2 ammonia and methanol and stored and transported using various methods. This paper employs the Life Cycle Assessment methodology to compare 18 different green hydrogen pathways and provide recommendations for greening the hydrogen supply chain. The findings indicate that the production pathway utilizing concentrated photovoltaic thermal panels for electricity generation and hydrogen compression in the conditioning and transportation stages exhibits the lowest environmental impact emitting only 2.67 kg of CO2 per kg of H2 .
Comparative Study of LNG, Liquid Hydrogen ,and Liquid Ammonia Post-release Evaporation and Dispersion During Bunkering
Apr 2024
Publication
The use of alternative fuels is a primary means for decarbonising the maritime industry. Liquefied natural gas (LNG) liquid hydrogen (LH2) and liquid ammonia (LNH3) are liquified gases among the alternative fuels. The safety risks associated with these fuels differ from traditional fuels. In addition to their low-temperature hazards the flammability of LNG and LH2 and the high toxicity of LNH3 present challenges in fuel handlings due to their high likelihood of fuel release during bunkering. This study aims at drawing extensive comparisons of the evaporation and vapour dispersion behaviours for the three fuels after release accidents during bunkering and discuss their safety issues. The study involved the release event of the three fuels on the main deck area of a reference bulk carrier with a deadweight of 208000 tonnes. Two release scenarios were considered: Scenario 1 involved a release of 0.3 m3 of fuel and Scenario 2 involved a release of 100 kg of fuel. An empirical equation was used to calculate the fuel evaporation process and the Computational Fluid Dynamic (CFD) code FDS was employed to simulate the dispersion of vapour clouds. The obtained results reveal that LH2 has the highest evaporation rate followed by LNG and LNH3. The vapour clouds of LNG and LNH3 spread along the main deck surface while the LH2 vapour cloud exhibits upward dispersion. The flammable vapour clouds of LNG and LH2 remain within the main deck area whereas the toxic gas cloud of LNH3 disperses towards the shore and spreads near the ground on the shore side. Based on the dispersion behaviours the hazards of LNG and LH2 are com parable while LNH3 poses significantly higher hazards. In terms of hazard mitigations effective water curtain systems can suppress the vapour dispersion.
Techno-economic Analysis of Stand-alone Hybrid PV-Hydrogen-Based Plug-in Electric Vehicle Charging Station
Sep 2024
Publication
The increase in the feasibility of hydrogen-based generation makes it a promising addition to the realm of renewable energies that are being employed to address the issue of electric vehicle charging. This paper presents technical and an economical approach to evaluate a newer off-grid hybrid PV-hydrogen energy-based recharging station in the city of Jamshoro Pakistan to meet the everyday charging needs of plug-in electric vehicles. The concept is designed and simulated by employing HOMER software. Hybrid PV-hydrogen and PV-hydrogenbattery are the two different scenarios that are carried out and compared based on their both technical as well as financial standpoints. The simulation results are evident that the hybrid PV- hydrogen-battery energy system has much more financial and economic benefits as compared with the PV-hydrogen energy system. Moreover it is also seen that costs of energy from earlier from hybrid PV-hydrogen-battery is more appealing i.e. 0.358 $/kWh from 0.412 $/kWh cost of energy from hybrid PV-hydrogen. The power produced by the hybrid PV- hydrogen - battery energy for the daily load demand of 1700 kWh /day consists of two powers produced independently by the PV and fuel cells of 87.4 % and 12.6 % respectively.
A Comprehensive Review of Hydrogen Safety through a Metadata Analysis Framework
Feb 2025
Publication
Hydrogen is widely recognized as a promising clean energy carrier but its highly flammable and explosive nature presents significant safety challenges in its production storage transportation and usage. Addressing these challenges is critical for the successful integration of hydrogen into global energy systems aligning with the United Nations’ sustainable development goals to support the transition to a low-carbon future. This study aims to provide a comprehensive review of hydrogen safety through a metadata analysis framework focusing on risks challenges mitigation strategies and regulations for safe handling. Previous reviews have largely addressed general hydrogen safety concerns but none have systematically evaluated the issue from a data-driven perspective. This review fills that gap by analyzing research trends root causes of hydrogen’s unsafe handling such as its low molecular density broad flammability range and high permeability and exploring solutions such as chemical additives and gaseous inhibitors to improve safety. Utilizing bibliometric techniques and scientific mapping tools this study synthesizes extensive research spanning from 2000 to 2024 visualizing the evolution of hydrogen safety research and identifying critical areas for future inquiry. The findings contribute valuable insights into the safe deployment of hydrogen technologies offering recommendations for future research and regulatory advancements to mitigate risks and ensure hydrogen’s role in a sustainable energy future.
Planning Energy Hubs with Hydrogen and Battery Storage for Flexible Ramping Market Participation
Oct 2025
Publication
The integration of renewable resources with advanced storage technologies is critical for sustainable energy systems. In this paper a planning framework for an energy hub incorporating hydrogen and renewable energy systems is developed with the objective of minimizing operational costs while participating in flexible ramping product (FRP) markets. The energy hub is designed to utilize a hybrid storage system comprising multi-type battery energy storage (BESS) accounting for diverse chemistries and degradation behaviors and hydrogen storage (HS) to meet concurrent electric and hydrogen demands. To address uncertainties in renewable generation and market prices a stochastic optimization model is developed to determine the optimal investment capacities while optimizing operational decisions under uncertainty using scenario-based stochastic programming. Financial risks associated with price and renewable variability are mitigated through the Conditional Value-at-Risk (CVaR) metric. Case studies demonstrate that hybrid storage systems including both BESS and HS can reduce total costs by 23.62% compared to single-storage configurations that rely solely on BESS. Based on the results BESS participates more in providing flexible ramp-up services while HS plays a major role in providing flexible ramp-down services. The results emphasize the critical role of co-optimized hydrogen and multi-type BESS in enhancing grid flexibility and economic viability.
Technoeconomic analysis of Hydrogen Versus Natural Gas Considering Safety Hazards and Energy Efficiency Indicators
Aug 2025
Publication
Hydrogen (H2) is emerging as a key alternative to fossil fuels in the global energy transition. This study presents a comparative techno-economic analysis of H2 and natural gas (NG) focusing on safety hazards energy output CO2 emissions and cost-effectiveness aspects. Our analysis showed that compared to NG and other highly flammable gases like acetylene (C2 H2) and propane (C3 H8) H2 has a higher hazard potential due to factors such as its wide flammability range low ignition energy and high flame speed. In terms of energy output 1 kg of NG produces 48.60 MJ while conversion to liquefied natural gas (LNG) grey H2 and blue H2 reduces energy output to 45.96 MJ 35.45 MJ and 31.21 MJ respectively. Similarly while unconverted NG emits 2.72 kg of CO2 per kg emissions increase to 3.12 kg for LNG and 3.32 kg for grey H2. However blue H2 significantly reduces CO2 emissions to 1.05 kg per kg due to carbon capture and storage. From an economic perspective producing 1 kg of NG yields a profit of $0.011. Converting NG to grey H2 is most profitable yielding a net profit of $0.609 per kg of NG while blue H2 despite higher production costs remains viable with a profit of $0.390 per kg of NG. LNG conversion also shows profitability with $0.061 per kg of NG. This analysis highlights the trade-offs between energy efficiency environmental impact and economic viability providing valuable insights for stakeholders formulating hydrogen and LNG implementation strategies.
Preliminary Feasibility Study of Using Hydrogen as a Fuel for an Aquaculture Vessel in Tasmania, Australia
Oct 2025
Publication
Decarbonising aquaculture support vessels is pivotal to reducing greenhouse gas (GHG) emissions across both the aquaculture and maritime sectors. This study evaluates the technical and economic feasibility of deploying hydrogen as a marine fuel for a 14.95 m net cleaning vessel (NCV) operating in Tasmania Australia. The analysis retains the vessel’s original layout and subdivision to enable a like-for-like comparison between conventional diesel and hydrogen-based systems. Two options are evaluated: (i) replacing both the main propulsion engines and auxiliary generator sets with hydrogen-based systems— either proton exchange membrane fuel cells (PEMFCs) or internal combustion engines (ICEs); and (ii) replacing only the diesel generator sets with hydrogen power systems. The assessment covers system sizing onboard hydrogen storage integration operational constraints lifecycle cost and GHG abatement. Option (i) is constrained by the sizes and weights of PEMFC systems and hydrogen-fuelled ICEs rendering full conversion unfeasible within current spatial and technological limits. Option (ii) is technically feasible: sixteen 700 bar cylinders (131.2 kg H2 total) meet one day of onboard power demand for net-cleaning operations with bunkering via swap-and-go skids at the berth. The annualised total cost of ownership for the PEMFC systems is 1.98 times that of diesel generator sets while enabling annual CO2 reductions of 433 t. The findings provide a practical decarbonisation pathway for small- to medium-sized service vessels in niche maritime sectors such as aquaculture while clarifying near-term trade-offs between cost and emissions.
No more items...