Romania
Optimizing a Hydrogen and Methane Blending System Through Design and Simulation
Apr 2025
Publication
Hydrogen–methane gas mixtures are increasingly recognized as a viable path toward achieving carbon neutrality leveraging existing natural gas infrastructure while reducing greenhouse gas emissions. This study investigates a novel static mixing device designed for blending hydrogen and methane employing both experimental tests and threedimensional computational fluid dynamics (CFD) simulations. Hydrogen was introduced into a methane flow via direct injection with experimental mixtures ranging from 5% to 18% hydrogen. The mixture quality was assessed using a specialized gas chromatograph and the results were compared against simulated data to evaluate the mixer’s performance and the model’s accuracy. The system demonstrated effective blending maintaining uniform hydrogen concentrations across the outlet with minimal variations. Experimental and simulated results showed strong agreement with an average accuracy error below 2% validating the reliability of the CFD model. Smaller nozzles (0.4 mm) achieved greater mixing uniformity while larger nozzles (0.6 mm) facilitated higher hydrogen throughput indicating trade-offs between mixing precision and flow capacity. The mixing device proved compatible with existing pipeline infrastructure offering a scalable solution for hydrogen integration into natural gas networks. These findings underscore the mixer’s potential as a practical component in advancing the hydrogen economy and achieving sustainable energy transitions.
Electrochemical Sensor for Hydrogen Leakage Detection at Room Temperature
Jan 2025
Publication
The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature combined with its lack of color taste and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate detection of hydrogen leakage. This paper presents both the component elements of the sensor like sensing material sensing element and signal conditioning as well as the electronic protection and signaling module of the critical concentrations of H2. The sensing material consists of a catalyst type Vulcan XC72 40% Pt from FuelCellStore (Bryan TX USA). The sensing element is based on a membrane electrode assembly (MEA) system that includes a cathode electrode an ion-conducting membrane type Nafion 117 from FuelCellStore (Bryan TX USA). and an anode electrode mounted in a coin cell type CR2016 from Xiamen Tob New Energy Technology Co. Ltd (Xiamen City Fujian Province China). The electronic block for electrical signal conditioning which is delivered by the sensing element uses an INA111 from Burr-Brown by Texas Instruments Corporation (Dallas TX USA). instrumentation operational amplifier. The main characteristics of the electrochemical sensor for hydrogen leakage detection are operation at room temperature so it does not require a heater maximum amperometric response time of 1 s fast recovery time of maximum 1 s and extended range of hydrogen concentrations detection in a range of up to 20%.
The Hydrogen Revolution in Diesel Engines: A Comprehensive Review of Performance, Combustion, and Emissions
Aug 2025
Publication
Fossil fuels have been the conventional source of energy that has driven economic growth and industrial development for a long time. However their extensive use has led to immense environmental problems especially concerning the emission of greenhouse gases. These problems have stimulated researchers to turn their attention to renewable alternative fuels. Hydrogen has risen in recent years as a prospective energy carrier because it is possible to produce it in an environmentally friendly manner and because it is the most common element. Hydrogen may be used in diesel engines in a dual-fuel mode. Hydrogen has a higher heating value flame speed and diffusivity in air. These superior fuel properties can enhance performance and combustion efficiency. Hydrogen can decrease carbon monoxide unburned hydrocarbons and soot emissions due to the absence of carbon in hydrogen. However hydrogen-fuelled diesel engines have problems such as engine knocking and high nitrogen oxide emission. This paper presents a comprehensive review of the recent literature on the performance combustion and emission characteristics of hydrogen-fuelled diesel engines. Moreover this paper discusses the long-term sustainability of hydrogen production methods nitrogen oxide emission reduction techniques challenges to the large-scale use of hydrogen economic implications of hydrogen use safety issues in hydrogen applications regulations on hydrogen safety conflicting NOx emission results in the literature and material incompatibility issues in hydrogen applications. This study highlights state-of-the-art developments along with critical knowledge gaps that will be useful in guiding future research. These findings can support researchers and industry professionals in the integration of hydrogen into both existing and future diesel engine technologies. According to the literature the use of hydrogen up to 46% decreased smoke emissions by over 75% while CO2 and CO emissions significantly decreased. Moreover hydrogen addition improved thermal efficiency up to 7.01% and decreased specific fuel consumption up to 7.19%.
Multi-timescale Coordinated Planning of BESS, Seasonal Hydrogen Storage, and Dynamic DR for Unbalanced RES-rich Microgrids
Sep 2025
Publication
Nowadays integrating renewable energy sources (RESs) poses significant challenges due to the deterioration of performance indices especially in cold-climate unbalanced microgrids. Beyond network unbalance harsh conditions with low irradiance weak wind speeds and low temperatures necessitate hydrogen storage systems (HSSs) to address seasonal mismatches between RES generation and demand. This paper proposes a two-stage multi-timescale planning framework that integrates RESs plug-in electric vehicles (PEVs) battery energy storage systems (BESSs) seasonal HSSs and a dynamic demand response (DDR) program. In the short term BESSs are coordinated under slow and fast charging/discharging modes for responding to daily load shifting and peak shaving or sudden demand fluctuations. Smart converters with active/reactive power control are equipped with RES and BESS for local voltage regulation. Furthermore the proposed DDR program which combines load reduction and valley filling strategies enables consumer flexibility based on real-time market signals across seasonal variations. Seasonal HSSs are designed to store excess hydrogen produced from RESs for long-term use across different seasons. The proposed strategy is validated in two stages. The first stage guarantees multitimescale coordination of BESSs seasonal HSSs and the DDR. In turn the second stage optimally plans RESs BESSs and HSSs in a unified manner to reduce voltage unbalance and line congestion while maximizing microgrid RES hosting capacity. Simulation results for six interconnected microgrids demonstrate a 12.5% reduction in voltage unbalance 21% alleviation of line congestion and a 108% increase in hosting capacity highlighting the effectiveness of the proposed planning approach for unbalanced RES-rich microgrids.
Green Hydrogen, a Solution for Replacing Fossil Fuels to Reduce CO2 Emissions
Aug 2024
Publication
The article examines the role of green hydrogen in reducing CO2 emissions in the transition to climate neutrality highlighting both its benefits and challenges. It starts by discussing the production of green hydrogen from renewable sources and provides a brief analysis of primary resource structures for energy production in European countries including Romania. Despite progress there remains a significant reliance on fossil fuels in some countries. Economic technologies for green hydrogen production are explored with a note that its production alone does not solve all issues due to complex and costly compression and storage operations. The concept of impure green hydrogen derived from biomass gasification pyrolysis fermentation and wastewater purification is also discussed. Economic efficiency and future trends in green hydrogen production are outlined. The article concludes with an analysis of hydrogen-methane mixture combustion technologies offering a conceptual framework for economically utilizing green hydrogen in the transition to a green hydrogen economy.
The Technical and Economic Aspects of Integrating Energy Sectors for Climate Neutrality
Sep 2024
Publication
With the development of an energy sector based on renewable primary sources structural changes are emerging for the entire national energy system. Initially it was estimated that energy generation based on fossil fuels would decrease until its disappearance. However the evolution of CO2 capture capacity leads to a possible coexistence for a certain period with the renewable energy sector. The paper develops this concept of the coexistence of the two systems with the positioning of green hydrogen not only within the renewable energy sector but also as a transformation vector for carbon dioxide captured in the form of synthetic fuels such as CH4 and CH3OH. The authors conducted pilot-scale research on CO2 capture with green H2 both for pure (captured) CO2 and for CO2 found in combustion gases. The positive results led to the respective recommendation. The research conducted by the authors meets the strict requirements of the current energy phase with the authors considering that wind and solar energy alone are not sufficient to meet current energy demand. The paper also analyzes the economic aspects related to price differences for energy produced in the two sectors as well as their interconnection. The technical aspect as well as the economic aspect of storage through various other solutions besides hydrogen has been highlighted. The development of the renewable energy sector and its demarcation from the fossil fuel energy sector even with the transcendent vector represented by green hydrogen leads to the deepening of dispersion aspects between the electricity sector and the thermal energy sector a less commonly mentioned aspect in current works but of great importance. The purpose of this paper is to highlight energy challenges during the current transition period towards climate neutrality along with solutions proposed by the authors to be implemented in this phase. The current stage of combustion of the CH4 − H2 mixture imposes requirements for the capture of the resulting CO2.
Energy Efficiency Analysis of a Fuel Cell Bus Model Using Real Scenarios Generated by Data Collection
Feb 2024
Publication
Modernizing public transportation is crucial given the ongoing call for sustainable mobility. Growing concerns about climate change and the increasingly stringent emissions standards have compelled public transport operators to embrace alternative propulsion vehicles on a broader scale. For the past years the Battery Electric Buses (BEBs) have been the vehicle of choice for public transportation. However an emerging contender in this sector is the Fuel Cell Electric Bus (FCEB). This paper aims to evaluate the way one such vehicle would perform in terms of energy efficiency while being exploited in an urban scenario generated from collected data.
Performance Evaluation of Renewable Energy Systems: Photovoltaic, Wind Turbine, Battery Bank, and Hydrogen Storage
Sep 2023
Publication
The analysis aims to determine the most efficient and cost-effective way of providing power to a remote site. The two primary sources of power being considered are photovoltaics and small wind turbines while the two potential storage media are a battery bank and a hydrogen storage fuel cell system. Subsequently the hydrogen is stored within a reservoir and employed as required by the fuel cell. This strategy offers a solution for retaining surplus power generated during peak production phases subsequently utilizing it during periods when the renewable power sources are generating less power. To evaluate the performance of the hydrogen storage system the analysis included a sensitivity analysis of the wind speed and the cost of the hydrogen subsystem. In this analysis the capital and replacement costs of the electrolyzer and hydrogen storage tank were linked to the fuel cell capital cost. As the fuel cell cost decreases the cost of the electrolyzer and hydrogen tank also decreases. The optimal system type graph showed that the hydrogen subsystem must significantly decrease in price to become competitive with the battery bank.
Floating Solar Energy Systems: A Review of Economic Feasibility and Cross-Sector Integration with Marine Renewable Energy, Aquaculture and Hydrogen
Jul 2025
Publication
Excessive reliance on traditional energy sources such as coal petroleum and gas leads to a decrease in natural resources and contributes to global warming. Consequently the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide especially in offshore areas. Floating solar photovoltaic (FPV) technology is gaining recognition as an innovative renewable energy option presenting benefits like minimized land requirements improved cooling effects and possible collaborations with hydropower. This study aims to assess the levelized cost of electricity (LCOE) associated with floating solar initiatives in offshore and onshore environments. Furthermore the LCOE is assessed for initiatives that utilize floating solar PV modules within aquaculture farms as well as for the integration of various renewable energy sources including wind wave and hydropower. The LCOE for FPV technology exhibits considerable variation ranging from 28.47 EUR/MWh to 1737 EUR/MWh depending on the technologies utilized within the farm as well as its geographical setting. The implementation of FPV technology in aquaculture farms revealed a notable increase in the LCOE ranging from 138.74 EUR/MWh to 2306 EUR/MWh. Implementation involving additional renewable energy sources results in a reduction in the LCOE ranging from 3.6 EUR/MWh to 315.33 EUR/MWh. The integration of floating photovoltaic (FPV) systems into green hydrogen production represents an emerging direction that is relatively little explored but has high potential in reducing costs. The conversion of this energy into hydrogen involves high final costs with the LCOH ranging from 1.06 EUR/kg to over 26.79 EUR/kg depending on the complexity of the system.
Laminar Burning Velocities of Hydrogen-Blended Methane–Air and Natural Gas–Air Mixtures, Calculated from the Early Stage of p(t) Records in a Spherical Vessel
Nov 2021
Publication
The flammable hydrogen-blended methane–air and natural gas–air mixtures raise specific safety and environmental issues in the industry and transportation; therefore their explosion characteristics such as the explosion limits explosion pressures and rates of pressure rise have significant importance from a safety point of view. At the same time the laminar burning velocities are the most useful parameters for practical applications and in basic studies for the validation of reaction mechanisms and modeling turbulent combustion. In the present study an experimental and numerical study of the effect of hydrogen addition on the laminar burning velocity (LBV) of methane–air and natural gas–air mixtures was conducted using mixtures with equivalence ratios within 0.90 and 1.30 and various hydrogen fractions rH within 0.0 and 0.5. The experiments were performed in a 14 L spherical vessel with central ignition at ambient initial conditions. The LBVs were calculated from p(t) data determined in accordance with EN 15967 by using only the early stage of flame propagation. The results show that hydrogen addition determines an increase in LBV for all examined binary flammable mixtures. The LBV variation versus the fraction of added hydrogen rH follows a linear trend only at moderate hydrogen fractions. The further increase in rH results in a stronger variation in LBV as shown by both experimental and computed LBVs. Hydrogen addition significantly changes the thermal diffusivity of flammable CH4–air or NG–air mixtures the rate of heat release and the concentration of active radical species in the flame front and contribute thus to LBV variation.
Numerical Modelling of Hydrogen Release and Dispersion
Jul 2021
Publication
Hydrogen is the most abundant element on earth being a low polluting and high efficiency fuel that can be used for various applications such as power generation heating or transportation. As a reaction to climate change authorities are working for determining the most promising applications for hydrogen one of the best examples of crossborder initiative being the IPCEI (Important Project of Common European Interest) on Hydrogen under development at EU level. Given the large interest for future uses of hydrogen special safety measures have to be implemented for avoiding potential accidents. If hydrogen is stored and used under pressure accidental leaks from pressure vessels may result in fires or explosions. Worldwide researchers are investigating possible accidents generated by hydrogen leaks. Special attention is granted to the atmospheric dispersion after the release so that to avoid fires or explosions. The use of consequence modelling software within safety and risk studies has shown its’ utility worldwide. In this paper there are modelled the consequences of the accidental release and atmospheric dispersion of hydrogen from a pressure tank using state-of-the-art QRA software. The simulation methodology used in this paper uses the “leak” model for carrying out discharge calculations. This model calculates the release rate and state of the gas after its expansion to atmospheric pressure. Accidental release of hydrogen is modelled by taking into account the process and meteorological conditions and the properties of the release point. Simulation results can be used further for land use planning or may be used for establishing proper protection measures for surrounding facilities. In this work we analysed two possible accident scenarios which may occur at an imaginary hydrogen refuelling station accidents caused by the leaks of the pressure vessel with diameters of 10 and 20 mm for a pressure tank filled with hydrogen at 35 MPa / 70 MPa. Process Hazard Analysis Software Tool 8.4 has been used for assessing the effects of the scenarios and for evaluating the hazardous extent around the analysed installation. Accident simulation results have shown that the leak size has an important effect on the flammable/explosive ranges. Also the jet fire’s influence distance is strongly influenced by the pressure and actual size of the accidental release.
Hydrogen in Natural Gas Grids: Prospects and Recommendations About Gas Flow Meters
Aug 2024
Publication
To inject green hydrogen (H2) into the existing natural gas (NG) infrastructure is one way to decarbonize the European energy system. However asset readiness is necessary to be successful. Preliminary analysis and experimental results about the compatibility of hydrogen and natural gas mixtures (H2NG) with the actual gas grids make the scientific community confident about the feasibility. Nevertheless specific technical questions need more research. A significant topic of debate is the impact of H2NG mixtures on the performance of state-ofthe-art fiscal measuring devices which are essential for accurate billing. Identifying and addressing any potential degradation in their metrological performance due to H2NG is critical for decision-making. However the literature lacks data about the gas meters’ technologies currently installed in the NG grids such as a comprehensive overview of their readiness at different concentrations while data are fragmented among different sources. This paper addresses these gaps by analyzing the main characteristics and categorizing more than 20000 gas meters installed in THOTH2 project partners’ grids and by summarizing the performance of traditional technologies with H2NG mixtures and pure H2 based on literature review operators experience and manufacturers knowledge. Based on these insights recommendations are given to stakeholders on overcoming the identified barriers to facilitate a smooth transition.
The Potential of Polymers and Glass to Enhance Hydrogen Storage Capicity: A Mathematical Approach
Dec 2024
Publication
This manuscript contributes to understanding the role of hydrogen in different materials emphasizing polymers and composite materials to increase hydrogen storage capacity in those materials. Hydrogen storage is critical in advancing and optimizing sustainable energy solutions that are essential for improving their performance. Capillary arrays which offer increased surface area and optimized storage geometries present a promising avenue for enhancing hydrogen uptake. This work evaluates various polymers and glass for their mechanical properties and strength with 700 bar inner pressure loads within capillary tubes. A theoretical mathematical approach was employed to quantify the impact of material properties on storage capacity. Our results demonstrate that certain polymers (e.g. Zylon AS Dyneema SK99) and glass types (S-2 Glass) exhibit superior hydrogen storage potential due to their enhanced strength and low density. These findings suggest that integrating the proposed materials into capillary array systems can significantly improve hydrogen storage efficiency (15–37 wt.% and 37–40 g/L) making them viable candidates for next-generation energy storage systems. This study provides valuable insights into material selection and structural design strategies for high-capacity hydrogen storage technologies.
The Transition to an Eco-Friendly City as a First Step Toward Climate Neutrality with Green Hydrogen
Mar 2025
Publication
A city of the future will need to be eco-friendly while meeting general social and economic requirements. Hydrogen-based technologies provide solutions for initially limiting CO2 emissions with prospects indicating complete decarbonization in the future. Cities will need to adopt and integrate these technologies to avoid a gap between the development of hydrogen production and its urban application. Achievable results are analyzed by injecting hydrogen into the urban methane gas network initially in small proportions but gradually increasing over time. This paper also presents a numerical application pertaining to the city of Bucharest Romania—a metropolis with a population of 2.1 million inhabitants. Although the use of fuel cells is less advantageous for urban transport compared to electric battery-based solutions the heat generated by hydrogen-based technologies such as fuel cells can be efficiently utilized for residential heating. However storage solutions are required for residential consumption separate from that of urban transport along with advancements in electric transport using existing batteries which necessitate a detailed economic assessment. For electricity generation including cogeneration gas turbines have proven to be the most suitable solution. Based on the analyzed data the paper synthesizes the opportunities offered by hydrogen-based technologies for a city of the future.
Decarbonized Green Hydrogen Production by Sorption-enhanced Biomass Gasification: An Integrated Techno-econonic and Environmental Evaluation
Nov 2024
Publication
Deployment of innovative renewable-based energy applications are critical for reducing CO2 emissions and achieving global climate neutrality. This work evaluates the production of decarbonized green H2 based on sorption-enhanced biomass (sawdust) gasification. The calcium-based sorbent was evaluated in a looping cycle configuration as sorption material to enhance both the CO2 capture rate and the energy-efficient hydrogen production. The investigated concept is set to produce 100 MWth high purity hydrogen (>99.95% vol.) with very high decarbonization yield (>98–99%) using woody biomass as a fuel. Conventional biomass (sawdust) gasification systems with and without CO2 capture capability are also assessed for the calculation of energy and economic penalties induced by decarbonization. The results show that the decarbonized green hydrogen manufacture by sorption-enhanced biomass gasification shows attractive performances e.g. high overall energy efficiency (about 50%) reduced energy and economic penalties for almost total decarbonization (down to 8 net efficiency points) low specific carbon emissions at system level (lower than 7 kg/MWh) and negative CO2 emission for whole biomass value chain (about − 518.40 kg/MWh). However significant developments (e.g. improving reactor design and fuel/sorbent conversion yields reducing sorbent make-up etc.) are still needed to advance this innovative concept from present level to industrial sizes.
Quantum-Inspired MoE-Based Optimal Operation of a Wave Hydrogen Microgrid for Integrated Water, Hydrogen, and Electricity Supply and Trade
Feb 2025
Publication
This research explores the optimal operation of an offshore wave-powered hydrogen system specifically designed to supply electricity and water to a bay in Humboldt California USA and also sell it with hydrogen. The system incorporates a desalination unit to provide the island with fresh water and feed the electrolyzer to produce hydrogen. The optimization process utilizes a mixture of experts in conjunction with the Quantitative Structure-Activity Relationship (QSAR) algorithm traditionally used in drug design to achieve two main objectives: minimizing operational costs and maximizing revenue from the sale of water hydrogen and electricity. Many case studies are examined representing typical electricity demand and wave conditions during typical summer winter spring and fall days. The simulation optimization and results are carried out using MATLAB 2018 and SAM 2024 software applications. The findings demonstrate that the combination of the QSAR algorithm and quantum-inspired MoE results in higher revenue and lower costs compared to other current techniques with hydrogen sales being the primary contributor to increased income.
Combining Babool Wood-derived Producer Gas and Hydrogen with Biodiesel as Efficienct Strategies for Dual-fuel Diesel Engine in Advancing Sustainable Energy
Sep 2025
Publication
The present investigation aims to provide a comparative assessment of using hydrogen-enriched wood waste-derived producer gas (PG) for a dual-fuel diesel engine fueled with a 20% Jatropha biodiesel/80% diesel blend (BD20) with the traditional mode. The experiments were conducted at 23°bTDC of injection timing 240 bar of injection pressure 17.5:1 of compression ratio and 1500 rpm of engine speed under various engine loads. Gas carburetor induction (GCI) port injection (PI) and inlet manifold injection (IMI) methods were used to supply H2-enriched PG while B20 is directly injected into the combustion chamber. Among all the combinations the IMI method provided the highest brake thermal efficiency of 30.91% the lowest CO emission of 0.08% and smoke opacity discharge of 49.26 HSU while NOx emission reached 1744.32 ppm which was lower than that of the PI mode. Furthermore the IMI method recorded the highest heat release rate of 91.17 J/°CA and peak cylinder pressure of 83.29 bar reflecting superior combustion quality. Finally using the IMI method for H2-enriched PG in dual-fuel diesel engines could improve combustion efficiency reduce greenhouse gas emissions and improve fuel economy showing that the combination of BD20 with H2-enriched PG offers a cleaner more sustainable and economically viable technology.
No more items...