Thailand
Hydrogen Generation by Photocatalytic Reforming of Potential Biofuels: Polyols, Cyclic Alcohols, and Saccharides
Jan 2018
Publication
We have studied hydrogen gas production using photocatalysis from C2-C5 carbon chain polyols cyclic alcohols and mono and di-saccharides using palladium nanoparticles supported on a TiO2 catalyst. For many of the polyols the hydrogen evolution rate is found to be dictated by the number of hydroxyl groups and available a-hydrogens in the structure. However the rule only applies to polyols and cyclic alcohols while the sugar activity is limited by the bulky structure of those molecules. There was also evidence of ring opening in photocatalytic reforming of cyclic alcohols that involved dehydrogenation and decarbonylation of a CC bond.
Maximizing H2 Production from a Combination of Catalytic Partial Oxidation of CH4 and Water Gas Shift Reaction
Jan 2025
Publication
A single-bed and dual-bed catalyst system was studied to maximize H2 production from the combination of partial oxidation of CH4 and water gas shift reaction. In addition the different types of catalysts including Ni Cu Ni-Re and Cu-Re supported on gadolinium-doped ceria (GDC) were investigated under different operating conditions of temperature (400–650 ◦C). Over Ni-based catalysts methane can easily dissociate on a Ni surface to give hydrogen and carbon species. Then carbon species react with lattice oxygen of ceria-based material to form CO. The addition of Re to Ni/GDC enhances CH4 dissociation on the Ni surface and increases oxygen storage capacity in the catalyst thus promoting carbon elimination. In addition the results showed that a dual-bed catalyst system exhibited catalytic activity better than a single-bed catalyst system. The dual-bed catalyst system by the combination of 1%Re4%Ni/GDC as a partial oxidation catalyst and 1%Re4%Cu/GDC as a water gas shift catalyst provided the highest CH4 conversion and H2 yield. An addition of Re onto Ni/GDC and Cu/GDC caused an increase in catalytic performance because Re addition could improve the catalyst reducibility and increase metal surface area as more of their surface active sites are exposed to reactants.
Performance and Cost Analysis of Hydrogen Production from Steam Reforming and Dehydrogenation of Ethanol
Aug 2020
Publication
Mitigation of carbon dioxide (CO2) emission has been a worldwide concern. Decreasing CO2 emission by converting it into higher value products such as methanol can be a promising way. However hydrogen (H2) cost and availability are one of key barriers to CO2 conversion. Ethanol can be a sustainable source for H2 due to its renewable nature and easy conversion to H2-rich gas mixtures through ethanol steam reforming process. Nevertheless steam reforming of ethanol generates CO2. Hence this research is focused on different methods of H2 productions about a 1665.47 t/y from ethanol for supplying to methanol plants was performed using Aspen PLUS V10. The ethanol steam reforming process required the lowest required ethanol feed for a certain amount of H2. In contrast the ethanol steam reforming process presented significant amount of CO2 emission from reaction and electricity consumption. But the ethanol dehydrogenation of ethanol not only generates H2 without CO2 emission from the reaction but also ethyl acetate or acetaldehyde which are value chemicals. However ethanol dehydrogenation processes in case II and III presented relatively higher cost because by-products (ethyl acetate or acetaldehyde) were rather difficult to be separated.
Technical, Economic, Carbon Footprint Assessment, and Prioritizing Stations for Hydrogen Production Using Wind Energy: A Case Study
Jul 2021
Publication
While Afghanistan’s power sector is almost completely dependent on fossil fuels it still cannot meet the rising power demand of this country. Deploying a combination of renewable energy systems with hydrogen production as the excess energy storage mechanism could be a sustainable long-term approach for addressing some of the energy problems of Afghanistan. Since Badakhshan is known to have a higher average wind speed than any other Afghan province in this study a technical economic and carbon footprint assessment was performed to investigate the potential for wind power and hydrogen production in this province. Wind data of four stations in Badakhshan were used for technical assessment for three heights of 10 30 and 40 m using the Weibull probability distribution function. This technical assessment was expanded by estimating the energy pattern factor probability of wind speeds greater than 5 m/s wind power density annual power output and annual hydrogen output. This was followed by an economic assessment which involved computing the Leveled Cost Of Energy (LCOE) the Leveled Cost Of Hydrogen (LCOH) and the payback period and finally an carbon footprint assessment which involved estimating the consequent CO2 reduction in two scenarios. The assessments were performed for 22 turbines manufactured by reputable companies with capacities ranging from 600 kW to 2.3 MW. The results showed that the entire Badakhshan province and especially Qal’eh-ye Panjeh and Fayazabad have excellent potentials in terms of wind energy that can be harvested for wind power and hydrogen production. Also wind power generation in this province will be highly cost-effective as the produced electricity will cost about one-third of the price of electricity supplied by the government. For better evaluation the GIS maps of wind power and hydrogen outputs were prepared using the IDW method. These maps showed that the eastern and northeastern parts of Badakhshan province have higher wind power-hydrogen production potentials. The results of ranking the stations with SWARA-EDAS hybrid MCDM methods showed that Qal’eh-ye Panjeh station was the best location to produce hydrogen from wind energy.
Proton Exchange Membrane Electrolyzer Modeling for Power Electronics Control: A Short Review
May 2020
Publication
The main purpose of this article is to provide a short review of proton exchange membrane electrolyzer (PEMEL) modeling used for power electronics control. So far three types of PEMEL modeling have been adopted in the literature: resistive load static load (including an equivalent resistance series-connected with a DC voltage generator representing the reversible voltage) and dynamic load (taking into consideration the dynamics both at the anode and the cathode). The modeling of the load is crucial for control purposes since it may have an impact on the performance of the system. This article aims at providing essential information and comparing the different load modeling.
Green Hydrogen and Electrical Power Production through the Integration of CO2 Capturing from Biogas: Process Optimization and Dynamic Control
Jun 2021
Publication
This study describes the optimization of a modelling process concerning biogas’ use to generate green hydrogen and electrical power. The Aspen Plus simulation tool is used to model the procedure and the approach employed to limit the emissions of gas from the hydrogen production process will be the CO2 capture method. This technique uses slack lime (Ca(OH)2) to absorb CO2 capture since it is readily available. The study analyzes many critical parameters in the process including the temperature and pressure in the steam reforming (SR) and the water gas shift (WGS) reactions along with the steam to carbon ratio (S/C) to determine how the production of green hydrogen and electrical power will be influenced. Electricity generation is achieved by taking the residual water from the SR WGS carbonation reactions and converting it to the vapour phase allowing the steam to pass through the turbine to generate electricity. To examine the effects of the synchronized critical parameters response surface methodology (RSM) was used thus allowing the optimal operational conditions to be determined in the form of an optimized zone for operation. The result of parameter optimization gave the maximum green hydrogen production of 211.46 kmol/hr and electric power production of 2311.68 kWh representing increases of 34.86% and 5.62% respectively when using 100 kmol/hr of biogas. In addition control structures were also built to control the reactors’ temperature in the dynamic section. The tuning parameters can control the SR and WGS system’s reactor to maintain the system in approximately 0.29 h and 0.32 h respectively.
Overview of Hydrogen Production Technologies for Fuel Cell Utilization
Jun 2023
Publication
With rapidly depleting fossil fuels and growing environmental alarms due to their usage hydrogen as an energy vector provides a clean and sustainable solution. However the challenge lies in replacing mature fossil fuel technology with efficient and economical hydrogen production. This paper provides a technoeconomic and environmental overview of H2 production technologies. Reforming of fossil fuels is still considered as the backbone of large-scale H2 production. Whereas renewable hydrogen has technically advanced and improved its cost remains an area of concern. Finding alternative catalytic materials would reduce such costs for renewable hydrogen production. Taking a mid-term timeframe a viable scenario is replacing fossil fuels with solar hydrogen production integrated with water splitting methods or from biomass gasification. Gasification of biomass is the preferred option as it is carbon neutral and costeffective producing hydrogen at 1.77 – 2.77 $/kg of H2. Among other uses of hydrogen in industrial applications the most viable approach is to use it in hydrogen fuel cells for generating electricity. Commercialization of fuel cell technology is hindered by a lack of hydrogen infrastructure. Fuel cells and hydrogen production units should be integrated to achieve desired results. Case studies of different fuel cells and hydrogen production technologies are presented at the end of this paper depicting a viable and environmentally acceptable approach compared with fossil fuels.
Open-Circuit Switch Fault Diagnosis and Accommodation of a Three-Level Interleaved Buck Converter for Electrolyzer Applications
Mar 2023
Publication
This article proposes a novel open-circuit switch fault diagnosis method (FDM) for a three-level interleaved buck converter (TLIBC) in a hydrogen production system based on the water electrolysis process. The control algorithm is suitably modified to ensure the same hydrogen production despite the fault. The TLIBC enables the interfacing of the power source (i.e. low-carbon energy sources) and electrolyzer while driving the hydrogen production of the system in terms of current or voltage. On one hand the TLIBC can guarantee a continuity of operation in case of power switch failures because of its interleaved architecture. On the other hand the appearance of a power switch failure may lead to a loss of performance. Therefore it is crucial to accurately locate the failure in the TLIBC and implement a fault-tolerant control strategy for performance purposes. The proposed FDM relies on the comparison of the shape of the input current and the pulse width modulation (PWM) gate signal of each power switch. Finally an experimental test bench of the hydrogen production system is designed and realized to evaluate the performance of the developed FDM and fault-tolerant control strategy for TLIBC during post-fault operation. It is implemented with a real-time control based on a MicroLabBox dSPACE (dSPACE Paderborn Germany) platform combined with a TI C2000 microcontroller. The obtained simulation and experimental results demonstrate that the proposed FDM can detect open-circuit switch failures in one switching period and reconfigure the control law accordingly to ensure the same current is delivered before the failure.
Enhancing Hydrogen Production from Chlorella sp. Biomass by Pre-Hydrolysis with Simultaneous Saccharification and Fermentation (PSSF)
Mar 2019
Publication
Simultaneous saccharification and fermentation (SSF) and pre-hydrolysis with SSF (PSSF) were used to produce hydrogen from the biomass of Chlorella sp. SSF was conducted using an enzyme mixture consisting of 80 filter paper unit (FPU) g-biomass−1 of cellulase 92 U g-biomass−1 of amylase and 120 U g-biomass−1 of glucoamylase at 35 ◦C for 108 h. This yielded 170 mL-H2 g-volatile-solids−1 (VS) with a productivity of 1.6 mL-H2 g-VS−1 h −1 . Pre-hydrolyzing the biomass at 50 ◦C for 12 h resulted in the production of 1.8 g/L of reducing sugars leading to a hydrogen yield (HY) of 172 mL-H2 g-VS−1 . Using PSSF the fermentation time was shortened by 36 h in which a productivity of 2.4 mL-H2 g-VS−1 h −1 was attained. To the best of our knowledge the present study is the first report on the use of SSF and PSSF for hydrogen production from microalgal biomass and the HY obtained in the study is by far the highest yield reported. Our results indicate that PSSF is a promising process for hydrogen production from microalgal biomass.
No more items...