Uruguay
Natural Hydrogen in Uruguay: Catalog of H2-Generating Rocks, Prospective Exploration Areas, and Potential Systems
Feb 2025
Publication
The increasing demand for carbon-free energy in recent years has positioned hydrogen as a viable option. However its current production remains largely dependent on carbon-emitting sources. In this context natural hydrogen generated through geological processes in the Earth’s subsurface has emerged as a promising alternative. The present study provides the first national-scale assessment of natural dihydrogen (H2) potential in Uruguay by developing a catalog of potential H2-generating rocks identifying prospective exploration areas and proposing H2 systems there. The analysis includes a review of geological and geophysical data from basement rocks and onshore sedimentary basins. Uruguay stands out as a promising region for natural H2 exploration due to the significant presence of potential H2-generating rocks in its basement such as large iron formations (BIFs) radioactive rocks and basic and ultrabasic rocks. Additionally the Norte Basin exhibits potential efficient cap rocks including basalts and dolerites with geological analogies to the Mali field. Indirect evidence of H2 in a free gas phase has been observed in the western Norte Basin. This suggests the presence of a potential H2 system in this area linked to the Arapey Formation basalts (seal) and Mesozoic sandstones (reservoir). Furthermore the proposed H2 system could expand exploration opportunities in northeastern Argentina and southern Brazil given the potential presence of similar play/tramp.
Mitigating Power Deficits in Lean-Burn Hydrogen Engines with Mild Hybrid Support for Urban Vehicles
Aug 2025
Publication
Hydrogen-fueled internal combustion engines present a promising pathway for reducing carbon emissions in urban transportation by allowing for the reuse of existing vehicle platforms while eliminating carbon dioxide emissions from the exhaust. However operating these engines with lean air–fuel mixtures—necessary to reduce nitrogen oxide emissions and improve thermal efficiency—leads to significant reductions in power output due to the low energy content of hydrogen per unit volume and slower flame propagation. This study investigates whether integrating a mild hybrid electric system operating at 48 volts can mitigate the performance losses associated with lean hydrogen combustion in a small passenger vehicle. A complete simulation was carried out using a validated one-dimensional engine model and a full zero-dimensional vehicle model. A Design of Experiments approach was employed to vary the electric motor size (from 1 to 15 kW) and battery capacity (0.5 to 5 kWh) while maintaining a fixed system voltage optimizing both the component sizing and control strategy. Results showed that the best lean hydrogen hybrid configuration achieved reductions of 18.6% in energy consumption in the New European Driving Cycle and 5.5% in the Worldwide Harmonized Light Vehicles Test Cycle putting its performance on par with the gasoline hybrid benchmark. On average the lean H2 hybrid consumed 41.2 kWh/100 km nearly matching the 41.0 kWh/100 km of the gasoline P0 configuration. Engine usage analysis demonstrated that the mild hybrid system kept the hydrogen engine operating predominantly within its high-efficiency region. These findings confirm that lean hydrogen combustion when supported by appropriately scaled mild hybridization is a viable near-zero-emission solution for urban mobility— delivering competitive efficiency while avoiding tailpipe CO2 and significantly reducing NOx emissions all with reduced reliance on large battery packs.
Levelized Cost of Hydrogen from Offtakers Standpoint: An Overlooked Perspective Via Case Studies in Warrnambool, Australia
Aug 2025
Publication
Green hydrogen is a promising energy vector for replacing fossil fuels in hard-to-abate sectors but its cost hinders widespread deployment. This research develops an exact MILP model to optimize the design of integrated green energy projects minimizing the total annual cost between different power configurations. The model is applied to a case study in regional Victoria Australia which supports a fleet of nine fuel cell electric buses requiring 1160 kg of hydrogen per week. The optimal system includes a 453 kW electrolyzer 212 kg of storage in compressed hydrogen vessels 704 kW of solar PV and 635 kW of wind power firmed with grid electricity. The LCOH is 14.8 A$/kg which is higher than other estimates in the literature for Australia. This is arguably due to the idle capacities resulting from intermittent hydrogen demand. Producing additional hydrogen with surplus or low-priced electricity could reduce LCOH to 12.4 A$/kg. Sensitivity analyzes confirm the robustness of the system to variations in key parameter costs resource availability and estimated energy supply and demand.
No more items...