United States
Underground Hydrogen Storage: Transforming Subsurface Science into Sustainable Energy Solutions
Feb 2025
Publication
As the global economy moves toward net-zero carbon emissions large-scale energy storage becomes essential to tackle the seasonal nature of renewable sources. Underground hydrogen storage (UHS) offers a feasible solution by allowing surplus renewable energy to be transformed into hydrogen and stored in deep geological formations such as aquifers salt caverns or depleted reservoirs making it available for use on demand. This study thoroughly evaluates UHS concepts procedures and challenges. This paper analyzes the most recent breakthroughs in UHS technology and identifies special conditions needed for its successful application including site selection guidelines technical and geological factors and the significance of storage characteristics. The integrity of wells and caprock which is important for safe and efficient storage can be affected by the operating dynamics of the hydrogen cycle notably the fluctuations in pressure and stress within storage formations. To evaluate its potential for broader adoption we also examined economic elements such as cost-effectiveness and the technical practicality of large-scale storage. We also reviewed current UHS efforts and identified key knowledge gaps primarily in the areas of hydrogen–rock interactions geochemistry gas migration control microbial activities and geomechanical stability. Resolving these technological challenges regulatory frameworks and environmental sustainability are essential to UHS’s long-term and extensive integration into the energy industry. This article provides a roadmap for UHS research and development emphasizing the need for further research to fully realize the technology’s promise as a pillar of the hydrogen economy
Recent Advances in Hydrogen Production, Storage and Fuel Cell Technologies with an Emphasis on Inventions, Innovations and Commercialization
Nov 2023
Publication
The future is bright for hydrogen as a clean mobile energy source to replace petroleum products. This paper examines new and emerging technologies for hydrogen production storage and conversion and highlights recent commercialization efforts to realize its potential. Also the paper presents selected notable patents issued within the last few years. There is no shortage of inventions and innovations in hydrogen technologies in both academia and industry. While metal hydrides and functionalized carbon-based materials have improved tremendously as hydrogen storage materials over the years storing gaseous hydrogen in underground salt caverns has also become feasible in many commercial projects. Production of “blue hydrogen” is rising as a method of producing hydrogen in large quantities economically. Although electric/battery powered vehicles are dominating the green transport today innovative hydrogen fuel cell technologies are knocking at the door because of their lower refueling time compared to EV charging time. However the highest impact of hydrogen technologies in trans portation might be seen in the aviation industry. Hydrogen is expected to play a key role and provides hope in transforming aviation into a zero-carbon emission transportation over the next few decades.
Pipeline Regulation for Hydrogen: Choosing Between Paths and Networks
Oct 2025
Publication
The reliance on hydrogen as part of the transition towards a low-carbon economy will require developing dedicated pipeline infrastructure. This deployment will be shaped by regulatory frameworks governing investment and access conditions ultimately structuring how the commodity is traded. The paper assesses the market design for hydrogen infrastructure assuming the application of unbundling requirements. For this purpose it develops a general economic framework for regulating pipeline infrastructure focusing on asset specificity market power and access rules. The paper assesses the scope of application of infrastructure regulation which can be set to individual pipelines or to entire networks. When treated as entire networks the infrastructure can provide flexibility to enhance market liquidity. However this requires establishing network monopolies which rely on central planning and reduce the overall dynamic efficiency of the sector. The paper further compares the regulation applied to US and EU natural gas pipeline infrastructure. Based on the different challenges faced by the EU hydrogen sector including absence of wholesale concentration and large infrastructure needs the paper draws lessons for a regulatory framework establishing the main building blocks of a hydrogen target model. The paper recommends a review of the current EU regulatory framework in the Hydrogen and Decarbonised Gas Package to enable i) the application of regulation to individual pipelines rather than entire networks; ii) the use of negotiated third-party access light-touch regulation and possibly marketbased coordination mechanisms for the access to the infrastructure and iii) a more significant role for long-term capacity contracts to underpin infrastructure investments.
Factors Affecting Energy Consumption in Hydrogen Liquefaction Plants
Aug 2025
Publication
Hydrogen energy is valued for its diverse sources and clean low-carbon nature and is a promising secondary energy source with wide-ranging applications and a significant role in the global energy transition. Nonetheless hydrogen’s low energy density makes its largescale storage and transport challenging. Liquid hydrogen with its high energy density and easier transport offers a practical solution. This study examines the global hydrogen liquefaction methods with a particular emphasis on the liquid nitrogen pre-cooling Claude cycle process. It also examines the factors in the helium refrigeration cycle—such as the helium compressor inlet temperature outlet pressure and mass—that affect energy consumption in this process. Using HYSYS software the hydrogen liquefaction process is simulated and a complete process system is developed. Based on theoretical principles this study explores the pre-cooling refrigeration and normal-to-secondary hydrogen conversion processes. By calculating and analyzing the process’s energy consumption an optimized flow scheme for hydrogen liquefaction is proposed to reduce the total power used by energy equipment. The study shows that the hydrogen mass flow rate and key helium cycle parameters—like the compressor inlet temperature outlet pressure and flow rate—mainly affect energy consumption. By optimizing these parameters notable decreases in both the total and specific energy consumption were attained. The total energy consumption dropped by 7.266% from the initial 714.3 kW and the specific energy consumption was reduced by 11.94% from 11.338 kWh/kg.
Fuel Cell Technology Review: Types, Economy, Applications, and Vehicle-to-grid Scheme
Feb 2025
Publication
This study conducts a thorough review of fuel cell technology including types economy applications and V2G scheme. Fuel cells have been considered for diverse applications namely electric vehicles specialty vehicles such as warehouse forklifts public transportation including buses trains and ferries. Other applications include grid-related stationary and portable applications. Among available five types of fuel cells PEMFC is presently the optimal choice for electric vehicle usage due to its low operating temperature and durability. Meanwhile high temperature fuel cells such as MCFC and SOFC currently remain the best choice for utility and grid related applications. The economy of fuel cells has been continuously improving and has been illustrated to only grow into a potential main source of sustainable energy soon. With the transportation sector as fuel cell electric ve hicles evolve V2G technology is beneficial towards energy efficiency and fuel cell economy. There is evidence for V2G using FCEV being more advantageous in comparison to conventional BEVs. The costs of the five types of fuel cell vary from US$1784 to US$4500 per kW capacity. The findings are beneficial for researchers and industry professionals who wish to gain comprehensive understanding of fuel cells for adoption and development of the emerging low-emission energy solutions.
Towards Carbon-Neutral Hydrogen: Integrating Methane Pyrolysis with Geothermal Energy
Oct 2025
Publication
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study we propose a hybrid geothermal pyrolysis configuration in which an enhanced geothermal system (EGS) provides baseload preheating and isothermal holding while either electrical or solar–thermal input supplies the final temperature rise to the catalytic set-point. The work addresses four main objectives: (i) integrating field-scale geothermal operating envelopes to define heatintegration targets and duty splits; (ii) assessing scalability through high-pressure reactor design thermal management and carbon separation strategies that preserve co-product value; (iii) developing a techno-economic analysis (TEA) framework that lists CAPEX and OPEX incorporates carbon pricing and credits and evaluates dual-product economics for hydrogen and carbon black; and (iv) reorganizing state-of-the-art advances chronologically linking molten media demonstrations catalyst development and integration studies. The process synthesis shows that allocating geothermal heat to the largest heat-capacity streams (feed recycle and melt/salt hold) reduces electric top-up demand and stabilizes reactor operation thereby mitigating coking sintering and broad particle size distributions. Highpressure operation improves the hydrogen yield and equipment compactness but it also requires corrosion-resistant materials and careful thermal-stress management. The TEA indicates that the levelized cost of hydrogen is primarily influenced by two factors: (a) electric duty and the carbon intensity of power and (b) the achievable price and specifications of the carbon co-product. Secondary drivers include the methane price geothermal capacity factor and overall conversion and selectivity. Overall geothermal-assisted methane pyrolysis emerges as a practical pathway to turquoise hydrogen if the carbon quality is maintained and heat integration is optimized. The study offers design principles and reporting guidelines intended to accelerate pilot-scale deployment.
Risk Assessment Framework for Green Hydrogen Megaprojects: Balancing Climate Goals with Project Viability
Dec 2024
Publication
Green hydrogen presents a promising solution for decarbonisation but its widespread adoption faces significant challenges. To meet Europe’s 2030 targets a 250-fold increase in electrolyser capacity is required necessitating an investment of €170-240 billion. This involves constructing 20-40 pioneering megaprojects each with a 1-5 GW capacity. Historically pioneering energy projects have seen capital costs double or triple from initial estimates with over 50% failing to meet production goals at startup due to new technology introductions site-specific characteristics and project complexity. Additionally megaprojects costing more than €1 billion frequently succumb to the "iron law" which states they are often over budget take longer than anticipated and yield fewer benefits than expected mainly because key players consistently underestimate costs and risks. Pursuing multiple pioneering megaprojects simultaneously restricts opportunities for iterative learning which raises risks related to untested technologies and infrastructure demands. This vision paper introduces a novel risk assessment framework that combines insights from pioneering and megaprojects with technology readiness evaluations and comparative CO2 reduction analyses to tackle these challenges. The framework aims to guide investment decisions and risk mitigation strategies such as staged scaling and limiting the introduction of new technology. The analysis highlights that using green ammonia for fertiliser production can reduce CO2 emissions by 51 tons of CO2 per ton of hydrogen significantly outperforming hydrogen use in transportation and heating. This structured approach considers risks and environmental benefits while promoting equitable risk distribution between developed and developing nations.
Hydrogen Production Plant via an Intensified Plasma-based Technology
Oct 2025
Publication
Developing cleaner processes via newer technologies will accelerate advancement toward more sustainable energy systems. Hydrogen is an energy carrier and an intermediate molecule in chemical processes. This research investigates an innovative hydrogen production process utilizing a non-thermal Cold Atmospheric Pressure Plasma-based Reformer (CAPR). Exploring environmentally friendly and economically viable pathways for hydrogen production is crucial for addressing climate change and reducing the carbon footprint of industrial processes. The study investigates the conversion of natural gas to hydrogen at ambient temperature and pressure highlighting the ability of plasma-based technology to operate without direct CO2 emissions.<br/>Initially through experimental studies natural gas was passed through the CAPR where the plasma's energetic discharges initiate the reforming process. Subsequently the produced hydrogen along with other light hydrocarbons enters the separation system for producing purified hydrogen. The research focuses on techno-economic analyses and sensitivity assessments to determine the levelized cost of producing hydrogen via a nanosecond plasma-based refining plant and benchmark technologies. Sensitivity analyses identify two primary factors that significantly affect the levelized cost of hydrogen production in a plasma-based reforming system.<br/>The research suggests that instead of producing carbon dioxide and capturing the emitted CO2 utilize processes that do not emit direct CO2. CAPR shows potential for cost competitiveness with conventional hydrogen production methods including steam methane reforming (SMR) and electrolysis. The findings underscore the need for further research to optimize the system's performance and cost-effectiveness positioning CAPR as a potentially transformative technology for the chemical process industry.
Everything About Hydrogen Podcast: COP28 Special
Dec 2023
Publication
To round off Season 5 the team are taking the podcast to COP28 in Dubai and providing listeners with a bit of texture including what the event was like to attend as well as sharing a snapshot of some of the varied voices and discussions that took place. Having had a little time for reflection Alicia Chris and Patrick also offer their thoughts and takeaways on what this COP might mean for the future.
COP28 was the first in nearly 30 years to feature hydrogen as part of the Presidential Action Agenda.
The podcast can be found on their website.
COP28 was the first in nearly 30 years to feature hydrogen as part of the Presidential Action Agenda.
The podcast can be found on their website.
Future of Hydrogen in the U.S. Energy Sector: MARKAL Modeling Results
Mar 2024
Publication
Hydrogen is an attractive energy carrier which could play a role in decarbonizing process heat power or transport applications. Though the U.S. already produces about 10 million metric tons of H2 (over 1 quadrillion BTUs or 1% of the U.S. primary energy consumption) production technologies primarily use fossil fuels that release CO2 and the deployment of other cleaner H2 production technologies is still in the very early stages in the U.S. This study explores (1) the level of current U.S. hydrogen production and demand (2) the importance of hydrogen to accelerate a net-zero CO2 future and (3) the challenges that must be overcome to make hydrogen an important part of the U.S. energy system. The study discusses four scenarios and hydrogen production has been shown to increase in the future but this growth is not enough to establish a hydrogen economy. In this study the characteristics of hydrogen technologies and their deployments in the long-term future are investigated using energy system model MARKAL. The effects of strong carbon constraints do not cause higher hydrogen demand but show a decrease in comparison to the business-as-usual scenario. Further according to our modeling results hydrogen grows only as a fuel for hard-to-decarbonize heavy-duty vehicles and is less competitive than other decarbonization solutions in the U.S. Without improvements in reducing the cost of electrolysis and increasing the performance of near-zero carbon technologies for hydrogen production hydrogen will remain a niche player in the U.S. energy system in the long-term future. This article provides the reader with a comprehensive understanding of the role of hydrogen in the U.S. energy system thereby explaining the long-term future projections.
Nanomaterials for Hydrogen Storage Applications: A Review
Sep 2008
Publication
Nanomaterials have attracted great interest in recent years because of the unusual mechanical electrical electronic opticalmagnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respectto energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of thisnew class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes nano-magnesiumbased hydrides complex hydride/carbon nanocomposites boron nitride nanotubes TiS2/MoS2 nanotubes alanates polymernanocomposites and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen.Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related tothe nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomicor molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides forimproving the thermodynamics and hydrogen reaction kinetics are discussed. In addition various carbonaceous nanomaterialsand novel sorbent systems (e.g. carbon nanotubes fullerenes nanofibers polyaniline nanospheres and metal organic frameworksetc.) and their hydrogen storage characteristics are outlined.
Hydrogen Production from Municipal Waste and Low Grade Lignite Blend
Nov 2024
Publication
The updraft rotating bed gasifier (URBG) offers a sustainable solution for waste-to-energy conversion utilizing low-grade lignite and municipal solid waste (MSW) from metropolitan dumping sites. This study investigates the co-gasification of lignite with various MSW components demonstrating a significant enhancement in gasification efficiency due to the synergistic effects arising from their higher hydrogen-to-carbon (H/C) ratios. We find feedstock blending is key to maximizing gasification efficiency from 11% to 52% while reducing SO emissions from 739 mg/kg to 155 mg/kg. Increasing the combustion zone temperature to 1100 K resulted in a peak hydrogen yield which was 19% higher than at 800 K. However steam management is complicated as increasing it improves hydrogen fraction in produced gas but gasification efficiency is compromised. These findingsshowcase the URBG’s potential to address both energy production and waste management challenges guiding fossil-reliant regions toward a more sustainable energy future.
A Comparative Science-Based Viability Assessment Among Current and Emerging Hydrogen Production Technologies
Jan 2025
Publication
This research undertakes a comparative analysis of current and emerging hydrogen (H2) production technologies evaluating them based on quantitative and qualitative decision criteria. The quantitative criteria include cost of H2 production (USD/kg H2) energy consumption (MJ/kg H2) global warming potential (kg CO2-eq/kg H2) and technology energy efficiency (%). The qualitative criteria encompass technology readiness level (TRL) and availability of supply chain materials (classified as low medium or high). To achieve these objectives an extensive literature review has been conducted systematically assessing the selected H2 production technologies against the aforementioned criteria. The insights synthesized from the literature provide a foundation for an informed science-based evaluation of the potentials and techno-economic challenges that these technologies face in achieving the 1-1-1 goal set by the U.S. Department of Energy (DOE) in 2021. This target aims for a H2 production cost of USD 1/kg H2 within one decade (by 2031) including costs associated with production delivery and dispensing at H2 fueling stations (HRSs). Also the DOE established an interim goal of USD 2/kg H2 by 2026. This research concludes that among the examined H2 production technologies water electrolysis and biomass waste valorization emerge as the most promising near-term solutions to meet the DOE’s goal.
A Multi-model Assessment of the Global Warming Potential of Hydrogen
Jun 2023
Publication
With increasing global interest in molecular hydrogen to replace fossil fuels more attention is being paid to potential leakages of hydrogen into the atmosphere and its environmental consequences. Hydrogen is not directly a greenhouse gas but its chemical reactions change the abundances of the greenhouse gases methane ozone and stratospheric water vapor as well as aerosols. Here we use a model ensemble of five global atmospheric chemistry models to estimate the 100-year time-horizon Global Warming Potential (GWP100) of hydrogen. We estimate a hydrogen GWP100 of 11.6 ± 2.8 (one standard deviation). The uncertainty range covers soil uptake photochemical production of hydrogen the lifetimes of hydrogen and methane and the hydroxyl radical feedback on methane and hydrogen. The hydrogeninduced changes are robust across the different models. It will be important to keep hydrogen leakages at a minimum to accomplish the benefits of switching to a hydrogen economy.
A Model-Based Systems Engineering Approach for Effective Decision Support of Modern Energy Systems Depicted with Clean Hydrogen Production
Aug 2024
Publication
A holistic approach to decision-making in modern energy systems is vital due to their increase in complexity and interconnectedness. However decision makers often rely on narrowlyfocused strategies such as economic assessments for energy system strategy selection. The approach in this paper helps considers various factors such as economic viability technological feasibility environmental impact and social acceptance. By integrating these diverse elements decision makers can identify more economically feasible sustainable and resilient energy strategies. While existing focused approaches are valuable since they provide clear metrics of a potential solution (e.g. an economic measure of profitability) they do not offer the much needed system-as-a-whole understanding. This lack of understanding often leads to selecting suboptimal or unfeasible solutions which is often discovered much later in the process when a change may not be possible. This paper presents a novel evaluation framework to support holistic decision-making in energy systems. The framework is based on a systems thinking approach applied through systems engineering principles and model-based systems engineering tools coupled with a multicriteria decision analysis approach. The systems engineering approach guides the development of feasible solutions for novel energy systems and the multicriteria decision analysis is used for a systematic evaluation of available strategies and objective selection of the best solution. The proposed framework enables holistic multidisciplinary and objective evaluations of solutions and strategies for energy systems clearly demonstrates the pros and cons of available options and supports knowledge collection and retention to be used for a different scenario or context. The framework is demonstrated in case study evaluation solutions for a novel energy system of clean hydrogen generation.
Deploying Green Hydrogen to Decarbonize China's Coal Chemical Sector
Dec 2023
Publication
China’s coal chemical sector uses coal as both a fuel and feedstock and its increasing greenhouse gas (GHG) emissions are hard to abate by electrification alone. Here we explore the GHG mitigation potential and costs for onsite deployment of green H2 and O2 in China’s coal chemical sector using a lifecycle assessment and techno-economic analyses. We estimate that China’s coal chemical production resulted in GHG emissions of 1.1 gigaton CO2 equivalent (GtCO2eq) in 2020 equal to 9% of national emissions. We project GHG emissions from China’s coal chemical production in 2030 to be 1.3 GtCO2eq ~50% of which can be reduced by using solar or wind power-based electrolytic H2 and O2 to replace coal-based H2 and air separation-based O2 at a cost of 10 or 153 Chinese Yuan (CNY)/tCO2eq respectively. We suggest that provincial regions determine whether to use solar or wind power for water electrolysis based on lowest cost options which collectively reduce 53% of the 2030 baseline GHG emissions at a cost of 9 CNY/tCO2eq. Inner Mongolia Shaanxi Ningxia and Xinjiang collectively account for 52% of total GHG mitigation with net cost reductions. These regions are well suited for pilot policies to advance demonstration projects.
Global Land and Water Limits to Electrolytic Hydrogen Production Using Wind and Solar Resources
Sep 2023
Publication
Proposals for achieving net-zero emissions by 2050 include scaling-up electrolytic hydrogen production however this poses technical economic and environmental challenges. One such challenge is for policymakers to ensure a sustainable future for the environment including freshwater and land resources while facilitating low-carbon hydrogen production using renewable wind and solar energy. We establish a country-by-country reference scenario for hydrogen demand in 2050 and compare it with land and water availability. Our analysis highlights countries that will be constrained by domestic natural resources to achieve electrolytic hydrogen self-sufficiency in a net-zero target. Depending on land allocation for the installation of solar panels or wind turbines less than 50% of hydrogen demand in 2050 could be met through a local production without land or water scarcity. Our findings identify potential importers and exporters of hydrogen or conversely exporters or importers of industries that would rely on electrolytic hydrogen. The abundance of land and water resources in Southern and Central-East Africa West Africa South America Canada and Australia make these countries potential leaders in hydrogen export.
Risk Sensitivity Study as the Basis for Risk-informed Consequence-based Setback Distances for Liquid Hydrogen Storage Systems
Sep 2023
Publication
A quantitative risk assessment on a representative liquid hydrogen storage system was performed to identify the main drivers of individual risk and provide a technical basis for revised separation distances for bulk liquid hydrogen storage systems in regulations codes and standards requirements. The framework in the Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+) toolkit was used and multiple relevant inputs to the risk assessment (e.g. system pipe size ignition probabilities) were individually varied. For each set of risk assessment inputs the individual risk as a function of the distance away from the release point was determined and the risk-based separation distance was determined from an acceptable risk criterion. These risk-based distances were then converted to equivalent leak size using consequence models that would result in the same distance to selected hazard criteria (i.e. extent of flammable cloud heat flux and peak overpressure). The leak sizes were normalized to a fraction of the flow area of the source piping. The resulting equivalent fractional hole sizes for each sensitivity case were then used to inform selection of a conservative fractional flow area leak size of 5% that serves as the basis for consequence-based separation distance calculations. This work demonstrates a method for using a quantitative risk assessment sensitivity study to inform the selection of a basis for determining consequence-based separation distances.
Fuelling the Future: An In-depth Review of Recent Trends, Challenges and Opportunities of Hydrogen Fuel Cell for a Sustainable Hydrogen Economy
Sep 2023
Publication
Hydrogen has gained tremendous momentum worldwide as an energy carrier to transit to a net zero emission energy sector. It has been widely adopted as a promising large-scale renewable energy (RE) storage solution to overcome RE resources’ variability and intermittency nature. The fuel cell (FC) technology became in focus within the hydrogen energy landscape as a cost-effective pathway to utilize hydrogen for power generation. Therefore FC technologies’ research and development (R&D) expanded into many pathways such as cost reduction efficiency improvement fixed and mobile applications lifetime safety and regulations etc. Many publications and industrial reports about FC technologies and applications are available. This raised the necessity for a holistic review study to summarize the state-of-the-art range of FC stacks such as manufacturing the balance of plant types technologies applications and R&D opportunities. At the beginning the principal technologies to compare the well known types followed by the FC operating parameters are presented. Then the FC balance of the plant i.e. building components and materials with its functionality and purpose types and applications are critically reviewed with their limitations and improvement opportunities. Subsequently the electrical properties of FCs with their key features including advantages and disadvantages were investigated. Applications of FCs in different sectors are elaborated with their key characteristics current status and future R&D opportunities. Economic attributes of fuel cells with a pathway towards low cost are also presented. Finally this study identifies the research gaps and future avenues to guide researchers and the hydrogen industry.
Route-to-Market Strategy for Low-carbon Hydrogen from Natural Gas in the Permian Basin
Aug 2023
Publication
This paper investigates the untapped potential of the Permian Basin a multifaceted energy axis in Texas and adjoining states in the emerging era of decarbonization. Aligned with current policy directives on regional hydrogen hubs this study explores the viability of developing a hydrogen energy hub in the Permian Basin thereby producing low-carbon intensity hydrogen from natural gas in the Basin and transporting it to the Greater Houston area. Diverging from existing literature this study provides an integrated techno-economic evaluation of the entire hydrogen value chain in the Permian Basin encompassing production storage and transportation. Furthermore it comparatively analyzes the scenario of interest against an optimized base scenario thereby underlining comparative advantages and disadvantages. The paper concludes that the delivered cost of Permian based low-carbon intensity hydrogen to the Greater Houston area is $1.85/kg benchmarked to the scenario with hydrogen produced close to the Greater Houston area and delivered at $1.42/kg. Our findings reveal that Permian-based low-carbon intensity hydrogen production can achieve cost savings in feedstock ($0.25/kg) and potentially accrue a higher production tax credit due to a shorter gas supply chain to production ($0.33/kg). Nevertheless a significant cost barrier is the expense of long-haul pipeline transport ($0.90/kg) from the Permian Basin to Houston as opposed to local production. Despite the obstacles the study identifies a potential breakeven solution where increasing the production scale to at least 412000 metric ton per year (about 3 steam reforming plants) in the Permian Basin can effectively lower costs in the transport sector. Hence a scaled-up production can mitigate the cost difference and establish the Permian Basin as a competitive player in the hydrogen market. In conclusion a SWOT analysis presents Strengths Weaknesses Opportunities and Threats associated with Permian-based hydrogen production.
No more items...