South Africa
A Systematic Review of Energy Recovery and Regeneration Systems in Hydrogen-Powered Vehicles for Deployment in Developing Nations
Aug 2025
Publication
Improving the efficiency and range of hydrogen-powered electric vehicles (HPEVs) is essential for their global adoption especially in developing countries with limited resources. This study systematically evaluates regenerative braking and suspension systems in HPEVs and proposes a deployment-focused framework tailored to the needs of developing nations. A comprehensive search was performed across multiple databases to identify relevant studies. The selected studies are screened assessed for quality and analyzed based on predefined criteria. The data is synthesized and interpreted to identify patterns gaps and conclusions. The findings show that regeneration systems such as regenerative braking and regenerative suspension are the most effective energy recovery systems in most electric and hydrogen-powered vehicles. Although the regenerative braking system (RBS) offers higher energy efficiency gains that enhance cost-effectiveness despite its high initial investment the regenerative suspension system (RSS) involves increased complexity. Still it offers comparatively efficient energy recovery particularly in developing countries with patchy road infrastructure. The gaps highlighted in this review will aid researchers and vehicle manufacturers in designing optimizing developing and commercializing HPEVs for deployment in developing countries.
Analysis of Equipment Failures as a Contributor to Hydrogen Refuelling Stations Incidents
Oct 2025
Publication
Hydrogen is a sustainable clean source of energy and a viable alternative to carbon-based fossil fuels. To support the transport sector’s transition from fossil fuels to hydrogen a hydrogen refuelling station network is being developed to refuel hydrogen-powered vehicles. However hydrogen’s inherent properties present a significant safety challenge and there have been several hydrogen incidents noted with severe impacts to people and assets reported from operational hydrogen refuelling stations worldwide. This paper presents the outcome of an analysis of hydrogen incidents that occurred at hydrogen refuelling stations. For this purpose the HIAD 2.1 and H2tool.org databases were used for the collection of hydrogen incidents. Forty-five incidents were reviewed and analysed to determine the frequent equipment failures in the hydrogen refuelling stations and the underlying causes. This study adopted a mixed research approach for the analysis of the incidents in the hydrogen refuelling stations. The analysis reveals that storage tank failures accounted for 40% of total reported incidents hydrogen dispenser failures accounted for 33% compressors accounted for 11% valves accounted for 9% and pipeline failures accounted for 7%. To enable the safe operation of hydrogen refuelling stations hazards must be understood effective barriers implemented and learning from past incidents incorporated into safety protocols to prevent future incidents.
Risk Assessment Framework for Green Hydrogen Megaprojects: Balancing Climate Goals with Project Viability
Dec 2024
Publication
Green hydrogen presents a promising solution for decarbonisation but its widespread adoption faces significant challenges. To meet Europe’s 2030 targets a 250-fold increase in electrolyser capacity is required necessitating an investment of €170-240 billion. This involves constructing 20-40 pioneering megaprojects each with a 1-5 GW capacity. Historically pioneering energy projects have seen capital costs double or triple from initial estimates with over 50% failing to meet production goals at startup due to new technology introductions site-specific characteristics and project complexity. Additionally megaprojects costing more than €1 billion frequently succumb to the "iron law" which states they are often over budget take longer than anticipated and yield fewer benefits than expected mainly because key players consistently underestimate costs and risks. Pursuing multiple pioneering megaprojects simultaneously restricts opportunities for iterative learning which raises risks related to untested technologies and infrastructure demands. This vision paper introduces a novel risk assessment framework that combines insights from pioneering and megaprojects with technology readiness evaluations and comparative CO2 reduction analyses to tackle these challenges. The framework aims to guide investment decisions and risk mitigation strategies such as staged scaling and limiting the introduction of new technology. The analysis highlights that using green ammonia for fertiliser production can reduce CO2 emissions by 51 tons of CO2 per ton of hydrogen significantly outperforming hydrogen use in transportation and heating. This structured approach considers risks and environmental benefits while promoting equitable risk distribution between developed and developing nations.
Optimization of Green Hydrogen Production via Direct Seawater Electrolysis Powered by Hybrid PV-Wind Energy: Response Surface Methodology
Oct 2025
Publication
This study explored the optimization of green hydrogen production via seawater electrolysis powered by a hybrid photovoltaic (PV)-wind system in KwaZulu-Natal South Africa. A Box–Behnken Design (BBD) adapted from Response Surface Methodology (RSM) was utilized to address the synergistic effect of key operational factors on the integration of renewable energy for green hydrogen production and its economic viability. Addressing critical gaps in renewable energy integration the research evaluated the feasibility of direct seawater electrolysis and hybrid renewable systems alongside their techno-economic viability to support South Africa’s transition from a coal-dependent energy system. Key variables including electrolyzer efficiency wind and PV capacity and financial parameters were analyzed to optimize performance metrics such as the Levelized Cost of Hydrogen (LCOH) Net Present Cost (NPC) and annual hydrogen production. At 95% confidence level with regression coefficient (R2 > 0.99) and statistical significance (p < 0.05) optimal conditions of electricity efficiency of 95% a wind-turbine capacity of 4960 kW a capital investment of $40001 operational costs of $40000 per year a project lifetime of 29 years a nominal discount rate of 8.9% and a generic PV capacity of 29 kW resulted in a predictive LCOH of 0.124$/kg H2 with a yearly production of 355071 kg. Within the scope of this study with the goal of minimizing the cost of production the lowest LCOH observed can be attributed to the architecture of the power ratios (Wind/PV cells) at high energy efficiency (95%) without the cost of desalination of the seawater energy storage and transportation. Electrolyzer efficiency emerged as the most influential factor while financial parameters significantly affected the cost-related responses. The findings underscore the technical and economic viability of hybrid renewable-powered seawater electrolysis as a sustainable pathway for South Africa’s transition away from coal-based energy systems.
Techno-economic Evaluation of Retrofitting Power-to-methanol: Grid-connected Energy Arbitrage vs Standalone Renewable Energy
Aug 2025
Publication
The power-to-methanol (PtMeOH) will play a crucial role as a form of renewable chemical energy storage. In this paper PtMeOH techno-economics are assessed using the promising configuration from the previous work (Mbatha et al. [1]). This study evaluated the effect of parameters such as the CO2 emission tax electricity price and CAPEX reduction on the product methanol economic parity with respect to a reference case. Superior to previous economic studies a scenario where an existing methanol synthesis infrastructure is 100 % retrofitted with the promising electrolyser is assessed in terms of its economics and the associated economic parity. The volatile South African electricity market is considered as a case study. The sensitivity of the PtMeOH and green H2 profitability are checked. Grid-connected and standalone renewable energy PtMeOH scenarios are assessed. Foremost generalisable effect trends of these parameters on the net present value (NPV) and the levelized cost of methanol(LCOMeOH) and H2 (LCOH2) are discussed. The results show that economic parity of H2 (LCOH2 = current selling price = 4.06 €/kg) can be reached with an electricity price of 30 €/MWh and 70 % of the CAPEX. While the LCOMeOH will still be above 2 €/kg at 80 % of the CAPEX and electricity price of 20 €/MWh. This indicates that even if the CAPEX reduces to 20 % of its original in this study and the electricity price reduces to about 20 €/MWh the LCOMEOH will still not reach economic parity (LCOMeOH > current selling price = 0.44 €/kg). The results show that to make the retrofitted plant with a minimum of 20 years of life span profitable a feasible reduction in the electricity price to below 10 €/MWh along with favourable incentives such as CO2 credit and reduction in CAPEX particularly that of the electrolyser and treatment of the PtMeOH as a multiproduct plant will be required.
HYDRIDE4MOBILITY: An EU Project on Hydrogen Powered Forklift using Metal Hydrides for Hydrogen Storage and H2 Compression
Jan 2025
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Ivan Tolj,
José Bellosta von Colbe,
Roman V. Denys,
Moegamat Wafeeq Davids,
S. Nyallang Nyamsi,
Dana Swanepoel,
V.V. Berezovets,
I.Yu. Zavaliy,
Suwarno Suwarno,
I.J. Puszkiel,
Julian Jepsen,
Inês Abreu Ferreira,
Claudio Pistidda,
Yuanyuan Shang,
Sivakumar Pasupathi and
Vladimir Linkov
The EU Horizon2020 RISE project 778307 “Hydrogen fuelled utility and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY) worked on the commercialization of hydrogen powered forklifts using metal hydride (MH) based hydrogen stores. The project consortium joined forces of 9 academic and industrial partners from 4 countries. The work program included a) Development of the materials for hydrogen storage and compression; b) Theoretical modelling and optimisation of the materials performance and system integration; c) Advanced fibre reinforced composite cylinder systems for H2 storage and compression; d) System validation. Materials development was focused on i) Zr/Ti-based Laves type high entropy alloys; ii) Mg-rich composite materials; iii) REMNiSn intermetallics; iv) Mg based materials for the hydrolysis process; v) Cost-efficient alloys. For the optimized AB2±x alloys the Zr/Ti content was optimized at A = Zr78-88Ti12–22 while B=Ni10Mn5.83VFe. These alloys provided a) Low hysteresis of hydrogen absorption-desorption; b) Excellent kinetics of charge and discharge; c) Tailored thermodynamics; d) Long cycle life. Zr0.85Ti0.15TM2 alloy provided a reversible H storage and electrochemical capacity of 1.6 wt% H and 450 mAh/g. The tanks development targeted: i) High efficiency of heat and hydrogen exchange; ii) Reduction of the weight and increasing the working H2 pressure; iii) Modelling testing and optimizing the H2 stores with fast performance. The system for power generation was validated at the Implats plant in a fuel cell powered forklift with on-board MH hydrogen storage and on-site H2 refuelling. The outcome on the HYDRIDE4MOBILITY project (2017–2024) (http://hydride4mobility.fesb.unist. hr) was presented in 58 publications.
Investigating the Investments Required to Transition New Zealand’s Heavy-Duty Vehicles to Hydrogen
Mar 2021
Publication
Reducing greenhouse gas emissions in the transport sector is known to be an important contribution to climate change mitigation. Some parts of the transport sector are particularly difficult to decarbonize; this includes the heavy-duty vehicle sector which is considered one of the “hardto-abate” sectors of the economy. Transitioning from diesel trucks to hydrogen fuel cell trucks has been identified as a potential way to decarbonize the sector. However the current and future costs and efficiencies of the enabling technologies remain unclear. In light of these uncertainties this paper investigates the investments required to decarbonize New Zealand’s heavy-duty vehicle sector with green hydrogen. By combining system dynamics modelling literature and hydrogen transition modelling literature a customized methodology is developed for modelling hydrogen transitions with system dynamics modelling. Results are presented in terms of the investments required to purchase the hydrogen production capacity and the investments required to supply electricity to the hydrogen production systems. Production capacity investments are found to range between 1.59 and 2.58 billion New Zealand Dollars and marginal electricity investments are found to range between 4.14 and 7.65 billion New Zealand Dollars. These investments represent scenarios in which 71% to 90% of the heavy-duty vehicle fleet are replaced with fuel cell trucks by 2050. The wide range of these findings reflects the large uncertainties in estimates of how hydrogen technologies will develop over the course of the next thirty years. Policy recommendations are drawn from these results and a clear opportunity for future work is outlined. Most notably the results from this study should be compared with research investigating the investments required to decarbonize the heavy-duty vehicle sectors with alternative technologies such as battery-electric trucks biodiesel and catenary systems. Such a comparison would ensure that the most cost effective decarbonization strategy is employed.
Catalysis as a Driver for Sustainable Technologies in Africa - A Perspective by the Catalysis Institute at the University of Cape Town
Mar 2023
Publication
One of the biggest global challenges we are facing today is the provision of affordable green and sustainable energy to a growing population. Enshrined in multiple United Nation Sustainable Development Goals – Goal 7: Affordable and Clean Energy; Goal 11: Sustainable Cities and Communities; Goal 12: Responsible Consumption and Production and Goal 13: Climate Action – as well as at the core of the Paris Agreement it is our task as scientists and engineers to develop innovative technologies that satisfy society’s needs while pivoting away from the use of fossil resources. This is a mammoth task with an ambitious timeline. The global development of the industrial sector as we know it is solely based on the exploitation of energy-rich fossil fuels that remain cost-competitive today. However a gradual change from a market driven to a policy-driven transition allows alternative technologies to make inroads and find applications. One of the most prominently discussed approaches is the Power-to-X (PtX) process envelope. It describes a series of catalytic conversions using only renewable energy water and captured CO2 to produce green hydrogen liquid hydrocarbon fuels and chemicals. Especially for sectors that are difficult or impossible to decarbonise such processes that effectively defossilising the production of energy and goods represent an important solution. The Catalysis Institute at the University of Cape Town (herein/after referred to as the Catalysis Institute) builds on decades of experience in the individual catalytic processes combined in the PtX concept. In collaboration with our global partners we are therefore able to develop technologies for the full value chain considering interdependencies and develop solutions for the African and indeed global society.
Advances in Hydrogen-Powered Trains: A Brief Report
Sep 2023
Publication
The majority of rail vehicles worldwide use diesel as a primary fuel source. Diesel engine carbon emissions harm the environment and human health. Although railway electrification can reduce emissions it is not always the most economical option especially on routes with low vehicle demand. As a result interest in hydrogen-powered trains as a way to reduce greenhouse gas (GHG) emissions has steadily grown in recent years. In this paper we discuss advancements made in hydrogen-powered freight and commuter trains as well as the technology used in some aspects of hydrogen-powered vehicles. It was observed that hydrogen-powered trains are already in use in Europe and Asia unlike most developing countries in Africa. Commuter trains have received most of the research and development (R&D) attention but interest in hydrogen-powered freight trains has recently picked up momentum. Despite the availability and use of gray and blue hydrogen green hydrogen is still the preferred fuel for decarbonizing the rail transport sector.
Production of Hydrogen Energy from Graphene-based Catalytic Technologies
Jul 2025
Publication
This comprehensive review aims at investigating graphene-based technologies in boosting hydrogen production via three methods including electrocatalysis photocatalysis and plasma-assisted reforming. Graphene stands out as an excellent catalytic material due to its exceptional attributes which include large surface area exceptional electrical and thermal conductivity adjustable electronic properties and outstanding mechanical strength. The research explores graphene’s contributions to hydrogen evolution through three main strategies including lowering energy barriers escalation of active sites and enhanced electrical charge transport. The study also focuses on graphene’s performance when functionalized with metal catalysts and heteroatoms enhancing its capability in charge separation and absorption of light during photocatalysis. The application of plasma to graphene improves catalytic reaction in hydrogen production with improved resistance to energy consumption. Large-scale industrial adoption of this technology remains restricted in terms production cost synthesis scalability and environmental safety issues. The research suggests an outlook for enhancing production technologies improving process sustainability and tackling scale-up technology to boost graphene’s incorporation into green and effective hydrogen energy production.
An Overview of Application-orientated Multifunctional Large-scale Stationary Battery and Hydrogen Hybrid Energy Storage System
Dec 2023
Publication
The imperative to address traditional energy crises and environmental concerns has accelerated the need for energy structure transformation. However the variable nature of renewable energy poses challenges in meeting complex practical energy requirements. To address this issue the construction of a multifunctional large-scale stationary energy storage system is considered an effective solution. This paper critically examines the battery and hydrogen hybrid energy storage systems. Both technologies face limitations hindering them from fully meeting future energy storage needs such as large storage capacity in limited space frequent storage with rapid response and continuous storage without loss. Batteries with their rapid response (90%) excel in frequent short-duration energy storage. However limitations such as a selfdischarge rate (>1%) and capacity loss (~20%) restrict their use for long-duration energy storage. Hydrogen as a potential energy carrier is suitable for large-scale long-duration energy storage due to its high energy density steady state and low loss. Nevertheless it is less efficient for frequent energy storage due to its low storage efficiency (~50%). Ongoing research suggests that a battery and hydrogen hybrid energy storage system could combine the strengths of both technologies to meet the growing demand for large-scale long-duration energy storage. To assess their applied potentials this paper provides a detailed analysis of the research status of both energy storage technologies using proposed key performance indices. Additionally application-oriented future directions and challenges of the battery and hydrogen hybrid energy storage system are outlined from multiple perspectives offering guidance for the development of advanced energy storage systems.
Paving the Way for Renewable Energy and Hydrogen Adoption in Southern Africa
Jun 2025
Publication
Rising population and rapid development in Africa have led to growing energy demands that exceed current supply underscoring the urgent need for expanded and reliable energy access. As the global agenda shifts toward sustainability integrating renewable energy sources presents a viable pathway to address these shortages. This study explores the energy landscape policies and transition strategies of five Southern African countries using Multi-Level Perspective theory and energy systems analysis to examine the dynamics of their energy transitions. Findings highlight the significant potential of green hydrogen solar wind and hydropower to supplement conventional fuels especially in energy-intensive sectors while reducing reliance on fossil fuels and mitigating climate impacts. The application of Multi-Level Perspective theory underscores the importance of managing interactions between niche innovations existing socio-technical regimes and broader landscape pressures to support systemic transformation. The transition to renewable energy will also impact the future of coal mining shaped by policy frameworks resource distribution technological developments and market trends. However several persistent barriers must be overcome these include limited access to energy high capital costs poverty political and economic instability regulatory inefficiencies and gaps in technical expertise. Achieving a successful and inclusive energy transition in Southern Africa will require strategic planning policy alignment stakeholder engagement and targeted support for vulnerable sectors. Ensuring that the process is sustainable equitable and just is essential to realizing long-term regional energy security and economic resilience.
Hydrogen Production, Storage, and Transportation: Recent Advances
Feb 2024
Publication
One such technology is hydrogen-based which utilizes hydrogen to generate energy without emission of greenhouse gases. The advantage of such technology is the fact that the only by-product is water. Efficient storage is crucial for the practical application of hydrogen. There are several techniques to store hydrogen each with certain advantages and disadvantages. In gaseous hydrogen storage hydrogen gas is compressed and stored at high pressures requiring robust and expensive pressure vessels. In liquid hydrogen storage hydrogen is cooled to extremely low temperatures and stored as a liquid which is energy-intensive. Researchers are exploring advanced materials for hydrogen storage including metal hydrides carbonbased materials metal–organic frameworks (MOFs) and nanomaterials. These materials aim to enhance storage capacity kinetics and safety. The hydrogen economy envisions hydrogen as a clean energy carrier utilized in various sectors like transportation industry and power generation. It can contribute to decarbonizing sectors that are challenging to electrify directly. Hydrogen can play a role in a circular economy by facilitating energy storage supporting intermittent renewable sources and enabling the production of synthetic fuels and chemicals. The circular economy concept promotes the recycling and reuse of materials aligning with sustainable development goals. Hydrogen availability depends on the method of production. While it is abundant in nature obtaining it in a clean and sustainable manner is crucial. The efficiency of hydrogen production and utilization varies among methods with electrolysis being a cleaner but less efficient process compared to other conventional methods. Chemisorption and physisorption methods aim to enhance storage capacity and control the release of hydrogen. There are various viable options that are being explored to solve these challenges with one option being the use of a multilayer film of advanced metals. This work provides an overview of hydrogen economy as a green and sustainable energy system for the foreseeable future hydrogen production methods hydrogen storage systems and mechanisms including their advantages and disadvantages and the promising storage system for the future. In summary hydrogen holds great promise as a clean energy carrier and ongoing research and technological advancements are addressing challenges related to production storage and utilization bringing us closer to a sustainable hydrogen economy.
Distributed Waste-to-hydrogen Refuelling Station Implementation in South Africa: Techno-economic-socio-political and Environmental Indications
Feb 2025
Publication
The combustion of liquid fossil fuels in the transportation sector disposal and incineration of municipal solid waste (MSW) are the main sources of greenhouse gas emissions in cities across the world. In an effort to decarbonize the transportation sector the South African government is dedicated to advancing green trans portation through the hydrogen economy. Waste-to-hydrogen production can simultaneously achieve the goals of green transportation and waste management through widespread availability of hydrogen refuelling stations. This study assesses the techno-economic and environmental viability of waste-to-hydrogen refuelling stations in five selected South Africa cities. The refuelling stations’ capacity was determined based on assumption that a 5 kg hydrogen-fuel-cell vehicle is refuelled per day. The economic feasibility was premised on net present value (NPV) payback period (PBP) internal rate of return (IRR) and levelized cost of hydrogen refuelling (LCOHr). The environmental analysis was based on ecological efficiency and carbon emission reduction potential. Some of the main findings indicate that the City of Tshwane and City of Johannesburg have refuelling station capacities of 356 thousand kg/day H2 and 395 thousand kg/day H2 respectively. Economically the project is viable with positive NPV between 1.099 and 8.0563 Billion $ LCOHr in the range of 3.99 $/kg - 5.63 $/kg PBP of 9.03–13.74 years and IRR of 18.16 %–39.88 %. An ecological efficiency of 99.982 % was obtained which in dicates an environmentally friendly system with the potential to save 1439 million litres and 1563 million litres of diesel fuel and gasoline respectively capable of preventing about 4 kilo-tons of CO2 into the atmosphere annually. Sensitivity analysis indicates that reforming efficiency selling price of hydrogen and station capacity are crucial parameters with great influence on the economic profitability of waste-to-hydrogen refuelling station.
A Techno-economic Assessment of the Viability of a Photovoltaic-wind-battery Storage-hydrogen Energy System for Electrifying Primary Healthcare Centre in Sub-Saharan Africa
Jun 2024
Publication
Healthcare facilities in isolated rural areas of sub-Saharan Africa face challenges in providing essential health services due to unreliable energy access. This study examines the use of hybrid renewable energy systems consisting of solar PV wind turbines batteries and hydrogen storage for the electrification of rural healthcare facilities in Nigeria and South Africa. The study deployed the efficacy of Hybrid Optimization of Multiple Energy Resources software for techno-economic analysis and the Evaluation based on the Distance from Average Solution method for multicriteria decision-making for sizing optimizing and selecting the optimal energy system. Results show that the optimal configurations achieve cost-effective levelized energy costs ranging from $0.336 to $0.410/kWh for both countries. For the Nigeria case study the optimal energy system includes 5 kW PV 10 kW fuel cell 10 kW inverter 10 kW electrolyzer and 16 kg hydrogen tank. South Africa's optimal configuration has 5 kW PV 10 kW battery 10 kW inverter and 7.5 kW rectifier. Solar PV provides more than 90% of energy with dual axis tracking yielding the highest output: 8889kWh/yr for Nigeria and 10470kWh/yr for South Africa. The multi-criteria decisionmaking analysis reveals that Nigeria's preferred option is the hybrid system without tracking. In contrast the horizontal axis weekly adjustment tracking configuration is optimal for South Africa considering technical economic and environmental criteria. The findings highlight the importance of context-specific optimization for hybrid renewable energy systems in rural healthcare facilities to accelerate Sustainable Development Goals 3 and 7.
Hydrogen Energy Resource: Overview of Production Techniques, Economy and Application in Microgrid Systems Operation
Sep 2025
Publication
Hydrogen (H2) fuel is one of eco-friendly resources for delivering de-carbonized and sustainable electricity supply in line with the UN’s Sustainable Development Goals 7 and 13 for affordable and clean energy and climate change action respectively. This paper presents a state-of-the art review of the H2 energy resource in terms of its history and evolution production techniques global economy market perspective and application to microgrid systems. It also introduces a systematic classification of the fuel. The production techniques examined include: the thermal approach such as the reforming gasification and thermochemical processes; the photocatalytic approach otherwise called artificial photosynthesis; the biological and photonic approach that involves the photolysis photo-fermentation dark fermentation CO gas fermentation and biomass valorization processes to produce H2 while the electrical approach is based on the chemical dissociation of electrolytes into their constituent ions by the passage of electric current. A particular attention is paid to the potential of the H2 resource in running some energy generators in microgrid systems such as the internal combustion engines microturbines and the fuel cells that are useful for combined heat and power application. The paper introduces different technical configurations topologies and processes that involve the use of green H2 fuel in generating systems and the connection of bus bars power converters battery bank and the electrical and thermal loads. The paper also presents hybrid fuel cell (FC) and PV system simulation using System Advisor Model (SAM) to showcase the use of H2 fuel in a micogrid. The paper provides insightful directions into the H2 economy smart electrical grid and the future prospects.
Synergies Between Green Hydrogen and Renewable Energy in South Africa
Aug 2025
Publication
South Africa has excellent conditions for renewable energy generation making it well placed to produce green hydrogen for both domestic use and export. In building a green hydrogen economy around export markets it will face competition from countries with equivalent or better resources and/or that are located closer to export markets (e.g. in North Africa and the Middle East) or have lower capital costs (developed markets like Australia and Canada). South Africa however has an extensive energy system with unserved electricity demand. The ability to trade electricity with the national grid (feeding into the grid during times of peak dedicated renewable energy supply and extracting from the grid during times of low dedicated renewable energy availability) could reduce the cost of producing green hydrogen by as much as 10–25 %. This paper explores the opportunity for South African green hydrogen producers presented by the electricity supply crisis that has been ongoing since 2007. It highlights the potential for a mutually reinforcing growth cycle between renewable energy and green hydrogen to be established which will contribute not only to the mitigation of greenhouse gas emissions but to the local economy and broader society.
The Hydrogen Challenge: Addressing Storage, Safety, and Environmental Concerns in the Hydrogen Economy
Aug 2025
Publication
As part of global decarbonization efforts hydrogen has emerged as a key energy carrier that can achieve deep emission reductions in various sectors. This review critically assesses the role of hydrogen in the low-carbon energy transition and highlights the interlinked challenges within the Techno-Enviro-Socio-Political (TESP) framework. It examines key aspects of deployment including production storage safety environmental impacts and socio-political factors to present an integrated view of the opportunities and barriers to large-scale adoption. Despite growing global interest over 90 % of the current global hydrogen production originated from fossilbased processes resulting in around 920 Mt of CO2 emissions two-thirds of which were attributable to fossil fuels. The Life Cycle Assessment (LCA) shows that coal-based electrolysis resulted in the highest GHG emission (144 - 1033 g CO2-eq/MJ) and an energy consumption (1.55–10.33 MJ/MJ H2). Without a switch to low-carbon electricity electrolysis cannot deliver significant climate benefits. Conversely methanol steam reforming based on renewable feedstock offered the lowest GHG intensity (23.17 g CO2-eq/MJ) and energy demand (0.23 MJ/ MJ) while biogas reforming proved to be a practical short-term option with moderate emissions (51.5 g CO2-eq/ MJ) and favourable energy figures. Catalytic ammonia cracking which is suitable for long-distance transport represents a compromise between low energy consumption (2.93 MJ/MJ) and high water intensity (8.34 L/km). The thermophysical properties of hydrogen including its low molecular weight high diffusivity and easy flammability lead to significant safety risks during storage and distribution which are exacerbated by its sensitivity to ignition and jet pulse effects. The findings show that a viable hydrogen economy requires integrated strategies that combine decarbonised production scalable storage harmonised safety protocols and cross-sector stakeholder engagement for better public acceptance. This review sets out a multi-dimensional approach to guide technological innovation policy adaptation and infrastructure readiness to support a scalable and environmentally sustainable hydrogen economy.
A Comparative Study of Alternative Polymer Binders for the Hydrogen Evolution Reaction
Aug 2025
Publication
Given the economic industrial and environmental value of green dihydrogen (H2) optimization of water electrolysis as a means of producing H2 is essential. Binders are a crucial component of electrocatalysts yet they remain largely underdeveloped with a significant lack of standardization in the field. Therefore targeted research into the development of alternative binder systems is essential for advancing performance and consistency. Binders essentially act as the key to regulating the electrode (support)–catalyst–electrolyte interfacial junctions and contribute to the overall reactivity of the electrocatalyst assembly. Therefore alternative binders were explored with a focus on cost efficiency and environmental compatibility striving to achieve desirable activity and stability. Herein the alkaline hydrogen evolution reaction (HER) was investigated and the sluggish water dissociation step was targeted. Controlled hydrophilic poly(vinyl alcohol)-based hydrogel binders were designed for this application. Three hydrogel binders were evaluated without incorporated electrocatalysts namely PVA145 PVA145-blend-bPEI1.8 and PVA145-blend-PPy. Interestingly the study revealed that the hydrophilicity of the binders exhibited an enhancing effect on the observed activity resulting in improved performance compared to the commercial binder Nafion™. Notably the PVA145 system stands out with an overpotential of 224 mV at−10 mA·cm−2 (geometric) in 1.0 M KOH compared to the 238 mV exhibited by Nafion™. Inclusion of Pt as active material in PVA145 as binder exhibited a synergistic increase in performance achieving a mass activity of 1.174 A.cm−2.mg−1 Pt in comparison to Nafion™’s 0.344 A.cm−2.mg−1 Pt measured at−150 mV vs RHE. Our research aimed to contribute to the development of cost-effective and efficient binder systems stressing the necessity to challenge the dominance of the commercially available binders.
A Review of Green Hydrogen Technologies and Their Role in Enabling Sustainable Energy Access in Remote and Off-Grid Areas Within Sub-Saharan Africa
Sep 2025
Publication
Electricity access deficits remain acute in Sub-Saharan Africa (SSA) where more than 600 million people lack reliable supply. Green hydrogen produced through renewablepowered electrolysis is increasingly recognized as a transformative energy carrier for decentralized systems due to its capacity for long-duration storage sector coupling and near-zero carbon emissions. This review adheres strictly to the PRISMA 2020 methodology examining 190 records and synthesizing 80 peer-reviewed articles and industry reports released from 2010 to 2025. The review covers hydrogen production processes hybrid renewable integration techno-economic analysis environmental compromises global feasibility and enabling policy incentives. The findings show that Alkaline (AEL) and PEM electrolyzers are immediately suitable for off-grid scenarios whereas Solid Oxide (SOEC) and Anion Exchange Membrane (AEM) electrolyzers present high potential for future deployment. For Sub-Saharan Africa (SSA) the levelized costs of hydrogen (LCOH) are in the range of EUR5.0–7.7/kg. Nonetheless estimates from the learning curve indicate that these costs could fall to between EUR1.0 and EUR1.5 per kg by 2050 assuming there is (i) continued public support for the technology innovation (ii) appropriate flexible and predictable regulation (iii) increased demand for hydrogen and (iv) a stable and long-term policy framework. Environmental life-cycle assessments indicate that emissions are nearly zero but they also highlight serious concerns regarding freshwater usage land occupation and dependence on platinum group metals. Namibia South Africa and Kenya exhibit considerable promise in the early stages of development while Niger demonstrates the feasibility of deploying modular community-scale systems in challenging conditions. The study concludes that green hydrogen cannot be treated as an integrated solution but needs to be regarded as part of blended off-grid systems. To improve its role targeted material innovation blended finance and policies bridging export-oriented applications to community-scale access must be established. It will then be feasible to ensure that hydrogen
No more items...