Zambia
From Biogas to Hydrogen: A Techno-Economic Study on the Production of Turquoise Hydrogen and Solid Carbons
Sep 2022
Publication
Biogas is a renewable feedstock that can be used to produce hydrogen through the decomposition of biomethane. However the economics of the process are not well studied and understood especially in cases where solid carbons are also produced and which have a detrimental effect on the performance of the catalysts. The scale as well as product diversification of a biogas plant to produce hydrogen and other value-added carbons plays a crucial role in determining the feasibility of biogasto-hydrogen projects. Through a techno-economic study using the discounted cash flow method it has been shown that there are no feasible sizes of plants that can produce hydrogen at the target price of USD 3/kg or lower. However for self-funded anaerobic digestor plants retrofitting modular units for hydrogen production would only make financial sense at biogas production capacities of more than 412 m3/h. A sensitivity analysis has also shown that the cost competitiveness is dependent on the type of carbon formed and low-grade carbon black has a negative effect on economic feasibility. Hydrogen produced from biogas would thus not be able to compete with grey hydrogen production but rather with current green hydrogen production costs.
A Comprehensive Review of Advances in Bioenergy including Emerging Trends and Future Directions
Aug 2025
Publication
Bioenergy is a promising alternative to fossil fuels-based energy with significant potential to transform global energy systems and promote environmental sustainability. This review provides a comprehensive overview of the evolution of bioenergy emphasizing its role in the global transition to sustainable energy. It explores a diverse range of biomass sources including forest and agricultural residues algae and industrial by-products and their conversion into energy via thermochemical biochemical and physicochemical pathways. The paper also highlights recent technological advancements and assesses the environmental sustainability of bioenergy systems. Additionally it examines key challenges hindering bioenergy development such as feedstock logistics technological limitations economic viability and policy gaps that need resolution to fully realise its potential. By synthesizing literature from 2010 to 2025 the review identifies strategic priorities for research and deployment aiming to inform efforts that align bioenergy utilization with global decarbonization goals.
No more items...