1900

Hydrogen embrittlement: the game changing factor in the applicability of nickel alloys in oilfield technology

Abstract

Precipitation hardenable (PH) nickel (Ni) alloys are often the most reliable engineering materials for demanding oilfield upstream and subsea applications especially in deep sour wells. Despite their superior corrosion resistance and mechanical properties over a broad range of temperatures, the applicability of PH Ni alloys has been questioned due to their susceptibility to hydrogen embrittlement (HE), as confirmed in documented failures of components in upstream applications. While extensive work has been done in recent years to develop testing methodologies for benchmarking PH Ni alloys in terms of their HE susceptibility, limited scientific research has been conducted to achieve improved foundational knowledge about the role of microstructural particularities in these alloys on their mechanical behaviour in environments promoting hydrogen uptake. Precipitates such as the γ′, γ′′ and δ-phase are well known for defining the mechanical and chemical properties of these alloys. To elucidate the effect of precipitates in the microstructure of the oil-patch PH Ni alloy 718 on its HE susceptibility, slow strain rate tests under continuous hydrogen charging were conducted on material after several different age-hardening treatments. By correlating the obtained results with those from the microstructural and fractographic characterization, it was concluded that HE susceptibility of oil-patch alloy 718 is strongly influenced by the amount and size of precipitates such as the γ′ and γ′′ as well as the δ-phase rather than by the strength level only. In addition, several HE mechanisms including hydrogen-enhanced decohesion and hydrogen-enhanced local plasticity were observed taking place on oil-patch alloy 718, depending upon the characteristics of these phases when present in the microstructure.

Link to document download on Royal Society Website

Countries: Germany
Loading

Article metrics loading...

/content/journal1463
2017-06-12
2021-06-21
http://instance.metastore.ingenta.com/content/journal1463
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error