1900

Molecular Dynamics Studies of Hydrogen Effect on Intergranular Fracture in α-Iron

Abstract

In the current study, the effect of hydrogen atoms on the intergranular failure of α-iron is examined by a molecular dynamics (MD) simulation. The effect of hydrogen embrittlement on the grain boundary (GB) is investigated by diffusing hydrogen atoms into the grain boundaries using a bicrystal body-centered cubic (BCC) model and then deforming the model with a uniaxial tension. The Debye Waller factors are applied to illustrate the volume change of GBs, and the simulation results suggest that the trapped hydrogen atoms in GBs can therefore increase the excess volume of GBs, thus enhancing intergranular failure. When a constant displacement loading is applied to the bicrystal model, the increased strain energy can barely be released via dislocation emission when H is present. The hydrogen pinning effect occurs in the current dislocation slip system, <111>{112}. The hydrogen atoms facilitate cracking via a decrease of the free surface energy and enhance the phase transition via an increase in the local pressure. Hence, the failure mechanism is prone to intergranular failure so as to release excessive pressure and energy near GBs. This study provides a mechanistic framework of intergranular failure, and a theoretical model is then developed to predict the intergranular cracking rate

Funding source: National Natural Science Foundation of China (52004323); China Postdoctoral Science Foundation (2017M622316); Shandong Province Doctoral Foundation (ZR2019BEE006); PetroChina Innovation Foundation (2019D-5007-0505); Fundamental Research Funds for the Central Universities (18CX05002A);Natural Science Foundation of Shandong Province (ZR2019MEE108).
Loading

Article metrics loading...

/content/journal1768
2020-11-04
2021-10-21
http://instance.metastore.ingenta.com/content/journal1768
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error