1900

Hydrogen Trapping Behavior in Vanadium Microalloyed TRIP-Assisted Annealed Martensitic Steel

Abstract

Transformation induced plasticity (TRIP)-assisted annealed martensitic (TAM) steel combines higher tensile strength and elogangtion, and has been increasingly used but appears to bemore prone to hydrogen embrittlement (HE). In this paper, the hydrogen trapping behavior and HE of TRIP-assisted annealed martensitic steels with different vanadium additions had been investigated by means of hydrogen charging and slow strain rate tensile tests (SSRT), microstructral observartion, and thermal desorption mass spectroscope (TDS). Hydrogen charging test results indicates that apparent hydrogen diffusive index Da is 1.94 × 10−7/cm2·s−1 for 0.21 wt.% vanadium steel, while the value is 8.05 × 10−7/cm2·s−1 for V-free steel. SSRT results show that the hydrogen induced ductility loss ID is 76.2% for 0.21 wt.%V steel, compared with 86.5% for V-free steel. The trapping mechanism of the steel containing different V contents is analyzed by means of TDS and Transmission electron microscope (TEM) observations. It is found out that the steel containing 0.21 wt.%V can create much more traps for hydrogen trapping compared with lower V steel, which is due to vanadium carbide (VC) precipitates acting as traps capturing hydrogen atoms.The relationship between hydrogen diffusion and hydrogentrapping mechanism is discussed in details.

Loading

Article metrics loading...

/content/journal1788
2019-06-30
2021-10-18
http://instance.metastore.ingenta.com/content/journal1788
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error