Skip to content

Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in Simulated Seawater in Presence of Different Alternating Current Densities


In this study, electrochemical measurements, immersion tests, and slow strain rate tensile (SSRT) tests were applied to investigate the electrochemical and stress corrosion cracking (SCC) behavior of X70 steel in simulated seawater with the interference of different alternating current (AC) densities. The results indicate that AC significantly strengthens the cathodic reaction, especially the oxygen reduction reaction. Simultaneously, hydrogen evolution reaction occurs when the limiting diffusion current density of oxygen reaches, and thus, icorr sharply increases with the increase in AC density. Additionally, when AC is imposed, the X70 steel exhibits higher SCC susceptibility in the simulated seawater, and the susceptibility increases with the increasing AC density. The SCC mechanism is controlled by both anodic dissolution (AD) and hydrogen embrittlement (HE) with the interference of AC.

Funding source: National Environmental Corrosion Platform, the National Basic Research Program of China (973 Program project, No. 2014CB643300); National Natural Science Foundation of China (No. 51471034); Natural Science Foundation of Shandong Province (No. ZR2016EMB08).

Article metrics loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error