Skip to content

Integrated Electricity, Hydrogen and Methane System Modelling Framework: Application to the Dutch Infrastructure Outlook 2050


The future energy system is widely expected to show increasing levels of integration across differing energy carriers. Electricity, hydrogen, methane and heat systems may become increasingly interdependent due to coupling through conversion and hybrid energy technologies. Market parties, network operators, policy makers and regulators require tools to capture implications of possible techno-economic and institutional developments in one system for the operation of others. In this article, we provide an integrated electricity, hydrogen and methane systems modelling framework focusing on interdependencies between them. The proposed integrated electricity and (renewable) gas system model is a market equilibrium model with hourly price and volume interactions, considering ramp rates of conventional units, variability of intermittent renewables, conversion, transport as well as storage of electricity, hydrogen and methane. The integrated model is formulated as a linear program under the assumption of perfect competition. As proof-of-concept, the model has been applied to a test case consisting of 34 electricity nodes, 19 hydrogen nodes and 22 methane nodes, reflecting the regional governance scenario in the Dutch Infrastructure Outlook 2050 study. The case study also includes different sensitivity analyses with regard to variable renewable capacity, energy demand and biomass prices to illustrate model response to perturbations of its main drivers. This article demonstrates that the interweaving of electricity, hydrogen and methane systems can provide the required flexibility in the future energy system.

Related subjects: Applications & Pathways
Countries: Netherlands

Article metrics loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error