1900

Integral Sliding Mode Control for Maximum Power Point Tracking in DFIG Based Floating Offshore Wind Turbine and Power to Gas

Abstract

This paper proposes a current decoupling controller for a Doubly-fed Induction Generator (DFIG) based on floating offshore wind turbine and power to gas. The proposed controller realizes Maximum Power Point Tracking (MPPT) through integral sliding mode compensation. By using the internal model control strategy, an open-loop controller is designed to ensure that the system has good dynamic performance. Furthermore, using the integral Sliding Mode Control (SMC) strategy, a compensator is designed to eliminate the parameter perturbation and external disturbance of the open-loop control. The parameters of the designed controller are designed through Grey Wolf Optimization (GWO). Simulation results show that the proposed control strategy has better response speed and smaller steady-state error than the traditional control strategy. This research is expected to be applied to the field of hydrogen production by floating offshore wind power.

Funding source: Foundation of Zhongshan Institute of Advanced Engineering Technology of WUT (Grant No. WUT202001), China. This work was also supported by projects from Key Lab. of Marine Power Engineering and Tech. authorized by MOT (KLMPET2020-01), the Fundamental Research Funds for the General Universities (WUT: 2021III007GX) and Shaoxing City Program for Talents Introduction, China.
Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal2159
2021-06-09
2021-10-18
http://instance.metastore.ingenta.com/content/journal2159
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error