1900

Electronic Structure and d-Band Center Control Engineering over Ni-Doped CoP3 Nanowall Arrays for Boosting Hydrogen Production

Abstract

To address the challenge of highly efficient water splitting into H2, successful fabrication of novel porous three-dimensional Ni-doped CoP3 nanowall arrays on carbon cloth was realized, resulting in an effective self-supported electrode for the electrocatalytic hydrogen-evolution reaction. The synthesized samples exhibit rough, curly, and porous structures, which are beneficial for gaseous transfer and diffusion during the electrocatalytic process. As expected, the obtained Ni-doped CoP3 nanowall arrays with a doping concentration of 7% exhibit the promoted electrocatalytic activity. The achieved overpotentials of 176 mV for the hydrogen-evolution reaction afford a current density of 100 mA cm−2, which indicates that electrocatalytic performance can be dramatically enhanced via Ni doping. The Ni-doped CoP3 electrocatalysts with increasing catalytic activity should have significant potential in the field of water splitting into H2. This study also opens an avenue for further enhancement of electrocatalytic performance through tuning of electronic structure and d-band center by doping.

Funding source: Natural Science Foundation of Henan Province (Grant no. 202300410068), and Postdoctoral Foundation of Henan Province (201902029). Key Scientific Research Projects of Higher Education in Henan Province (21zx008). Graduate Education Innovation and Quality Improvement Plan of Henan University (CX3040A0950132).
Related subjects: Production & Supply Chain
Loading

Article metrics loading...

/content/journal2234
2021-06-17
2021-09-18
http://instance.metastore.ingenta.com/content/journal2234
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error