1900

High Energy Density Storage of Gaseous Marine Fuels: An Innovative Concept and its Application to a Hydrogen Powered Ferry

Abstract

The upcoming stricter limitations on both pollutant and greenhouse gases emissions represent a challenge for the shipping sector. The entire ship design process requires an approach to innovation, with a particular focus on both the fuel choice and the power generation system. Among the possible alternatives, natural gas and hydrogen based propulsion systems seem to be promising in the medium and long term. Nonetheless, natural gas and hydrogen storage still represents a problem in terms of cargo volume reduction. This paper focuses on the storage issue, considering compressed gases, and presents an innovative solution, which has been developed in the European project GASVESSEL® that allows to store gaseous fuels with an energy density higher than conventional intermediate pressure containment systems. After a general overview of natural gas and hydrogen as fuels for shipping, a case study of a small Roll-on/Rolloff passenger ferry retrofit is proposed. The study analyses the technical feasibility of the installation of a hybrid power system with batteries and polymer electrolyte membrane fuel cells, fuelled by hydrogen. In particular, a process simulation model has been implemented to assess the quantity of hydrogen that can be stored on board, taking into account boundary conditions such as filling time, on shore storage capacity and cylinder wall temperature. The simulation results show that, if the fuel cells system is run continuously at steady state, to cover the energy need for one day of operation 140 kg of hydrogen are required. Using the innovative pressure cylinder at a storage pressure of 300 bar the volume required by the storage system, assessed on the basis of the containment system outer dimensions, is resulted to be 15.2 m3 with a weight of 2.5 ton. Even if the innovative type of pressure cylinder allows to reach an energy density higher than conventional intermediate pressure cylinders, the volume necessary to store a quantity of energy typical for the shipping sector is many times higher than that required by conventional fuels today used. The analysis points out, as expected, that the filling process is critical to maximize the stored hydrogen mass and that it is critical to measure the temperature of the cylinder walls in order not to exceed the material limits. Nevertheless, for specific application such as the one considered in the paper, the introduction of gaseous hydrogen as fuel, can be considered for implementing zero local emission propulsion system in the medium term.

Related subjects: Applications & Pathways
Countries: Italy
Loading

Article metrics loading...

/content/journal2766
2020-04-14
2022-12-04
http://instance.metastore.ingenta.com/content/journal2766
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error