Skip to content

Impact of Hydrogen Injection on Natural Gas Measurement


Hydrogen is increasingly receiving a primary role as an energy vector in ensuring the achievement of the European decarbonization goals by 2050. In fact, Hydrogen could be produced also by electrolysis of water using renewable sources, such as photovoltaic and wind power, being able to perform the energy storage function, as well as through injection into natural gas infrastructures. However, hydrogen injection directly impacts thermodynamic properties of the gas itself, such as density, calorific value, Wobbe index, sound speed, etc. Consequently, this practice leads to changes in metrological behavior, especially in terms of volume and gas quality measurements. In this paper, the authors present an overview on the impact of hydrogen injection in natural gas measurements. In particular, the changes in thermodynamic properties of the gas mixtures with different H2 contents have been evaluated and the effects on the accuracy of volume conversion at standard conditions have been investigated both on the theoretical point of view and experimentally. To this end, the authors present and discuss the effect of H2 injection in gas networks on static ultrasonic domestic gas meters, both from a theoretical and an experimental point of view. Experimental tests demonstrated that ultrasonic gas meters are not significantly affected by H2 injection up to about 10%.

Funding source: This research was funded by Regione Lazio, Progetti Strategici 2019 Progetto SINBIO “Sistemi INtegrati di produzione e immissione in rete di BIOmetano e gas sintetici da fonti rinnovabili,” Grant number F82I20000300002.
Related subjects: Hydrogen Blending
Countries: Italy ; Poland

Article metrics loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error