Skip to content
1900

A Comprehensive Comparison of State-of-the-art Manufacturing Methods for Fuel Cell Bipolar Plates Including Anticipated Future Industry Trends

Abstract

This article explains and evaluates contemporary methods for manufacturing bipolar plates (BPPs) for lowtemperature polymer electrolyte membrane fuel cells (LT-PEMFC) and highlights the potential of new improved approaches. BPPs are an essential component of fuel cells, responsible for distributing reaction gases to facilitate efficient conversion of gaseous electrochemical energy to electricity. BPPs must balance technical properties such as electrical and thermal conductivities, structural strength and corrosion resistance. Graphitic and metallic materials can meet the required specifications with each material offering distinct advantages and disadvantages. Each materials’ performance is complimented by a comparison of its manufacturability including: the material costs, production rates and required capital investment. These results are contextualised with respect to the target applications to identify the challenges and advantages of manufacturing methods of choice for BPPs. This analysis shows that the optimal choice of BPP manufacturing method depends entirely on the needs of the target application, in particular the relative importance of manufacturing rate, cost and the expected operational life of the bipolar plate to the fuel cell designer.

Funding source: The project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735606. This Joint Un- dertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Hydrogen Europe and N. ERGHY
Related subjects: Applications & Pathways
Countries: Germany
Loading

Article metrics loading...

/content/journal3059
2020-11-02
2024-04-20
http://instance.metastore.ingenta.com/content/journal3059
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error