Skip to content
1900

Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns

Abstract

Hydrogen is becoming an increasingly important energy carrier in sector integration for fuel cell transportation, heat and electricity. Underground salt caverns are one of the most promising ways to store the hydrogen obtained from water electrolysis using power generation from renewable energy sources (RES). At the same time, the production of hydrogen can be used to avoid energy curtailments during times of low electricity demand or low prices. The stored hydrogen can also be used during times of high energy demand for power generation, e.g., with fuel cells, to cover the fluctuations and shortages caused by low RES generation. This article presents an overview of the techniques that were used and proposed for using excess energy from RES for hydrogen production from water and its storage techniques, especially in underground salt caverns, for the aforementioned purpose, and its feasibility. This paper compares and summarizes the competing technologies based on the current state-of-the-art, identifies some of the difficulties in hydrogen production and storage, and discusses which technology is the most promising. The related analysis compares cost and techno-economic feasibility with regard to hydrogen production and storage systems. The paper also identifies the potential, technical challenges and the limitations associated with hydrogen integration into the power grid.

Funding source: The project HyCavMobil is funded by the German Federal Ministry for Digital and Transport (BMDV) under grant no. 03B10902B within the National Innovation Programme for Hydrogen and Fuel Cell Technology (NIP 2) coordinated by NOW GmbH (National Organisation Hydrogen and Fuel Cell Technology).
Related subjects: Production & Supply Chain
Countries: Germany
Loading

Article metrics loading...

/content/journal3144
2022-02-15
2024-04-18
http://instance.metastore.ingenta.com/content/journal3144
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error