Impact of Hydrogen/Natural Gas Blends on Partially Premixed Combustion Equipment: NOx Emission and Operational Performance


Several North American utilities are planning to blend hydrogen into gas grids, as a short‐ term way of addressing the scalable demand for hydrogen and as a long‐term decarbonization strat‐ egy for ‘difficult‐to‐electrify’ end uses. This study documents the impact of 0–30% hydrogen blends by volume on the performance, emissions, and safety of unadjusted equipment in a simulated use environment, focusing on prevalent partially premixed combustion designs. Following a thorough literature review, the authors describe three sets of results: operating standard and “ultra‐low NOx” burners from common heating equipment in “simulators” with hydrogen/methane blends up to 30% by volume, in situ testing of the same heating equipment, and field sampling of a wider range of equipment with 0–10% hydrogen/natural gas blends at a utility‐owned training facility. The equipment was successfully operated with up to 30% hydrogen‐blended fuels, with limited visual changes to flames, and key trends emerged: (a) a decrease in the input rate from 0 to 30% H2 up to 11%, often in excess of the Wobbe Index‐based predictions; (b) NOx and CO emissions are flat or decline (air‐free or energy‐adjusted basis) with increasing hydrogen blending; and (c) a minor de‐ crease (1.2%) or increase (0.9%) in efficiency from 0 to 30% hydrogen blends for standard versus ultra‐low NOx‐type water heaters, respectively.

Funding source: This research was funded in large part by Utilization Technology Development (www.utd-co.org) (accessed on 12 December 2021), under project number 22549.
Related subjects: Hydrogen Blending
Countries: United States

Article metrics loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error