1900

How to Power the Energy–Water Nexus: Coupling Desalination and Hydrogen Energy Storage in Mini-Grids with Reversible Solid Oxide Cells

Abstract

Sustainable Development Goals establish the main challenges humankind is called to tackle to assure equal comfort of living worldwide. Among these, the access to affordable renewable energy and clean water are overriding, especially in the context of developing economies. Reversible Solid Oxide Cells (rSOC) are a pivotal technology for their sector-coupling potential. This paper aims at studying the implementation of such a technology in new concept PV-hybrid energy storage mini-grids with close access to seawater. In such assets, rSOCs have a double useful effect: charge/discharge of the bulk energy storage combined with seawater desalination. Based on the outcomes of an experimental proof-of-concept on a single cell operated with salty water, the operation of the novel mini-grid is simulated throughout a solar year. Simulation results identify the fittest mini-grid configuration in order to achieve energy and environmental optimization, hence scoring a renewable penetration of more than 95%, marginal CO2 emissions (13 g/kWh), and almost complete coverage of load demand. Sector-coupling co-production rate (desalinated water versus electricity issued from the rSOC) is 0.29 L/kWh.

Related subjects: Production & Supply Chain
Countries: Italy
Loading

Article metrics loading...

/content/journal3985
2020-11-19
2022-11-30
http://instance.metastore.ingenta.com/content/journal3985
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error