Skip to content
1900

Research on the Primary Frequency Regulation Control Strategy of a Wind Storage Hydrogen-Generating Power Station

Abstract

Wind curtailment and weak inertia characteristics are two factors that shackle the permeability of wind power. An electric hydrogen production device consumes electricity to produce hydrogen under normal working conditions to solve the problem of abandoning wind. When participating in frequency regulation, it serves as a load reduction method to assist the system to rebuild a power balance and improve the wind power permeability. However, due to its own working characteristics, an electric hydrogen production device cannot undertake the high-frequency component of the frequency regulation power command; therefore, an energy storage device was selected to undertake a high-frequency power command to assist the electric hydrogen production device to complete the system frequency regulation. This paper first proposes and analyzes the architecture of a wind storage hydrogen-generating station for centralized hydrogen production with a distributed energy storage, and proposes the virtual inertia and droop characteristic mechanism of the wind storage hydrogen-generating station to simulate a synchronous unit. Secondly, an alkaline electrolysis cell suitable for large-scale engineering applications is selected as the research object and its mathematical model is established, the matching between different energy storage devices and their cooperation in power grid frequency regulation is analyzed, and a super capacitor is selected. A control strategy for the wind storage hydrogen-generating power station to participate in power grid frequency regulation with a wide time scale is then proposed. Using the first-order low-pass filter, the low-frequency component of the frequency regulation power command is realized by an electric hydrogen production device load reduction, and a high-frequency component is realized by the energy storage device. Finally, the effectiveness and rationality of the proposed control strategy are verified by establishing the simulation model of the wind storage hydrogen-generating power station with different initial wind speed states, comparing the system frequency dip values under the proposed multi-energy cooperative control strategy and a single energy device control strategy.

Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal4062
2022-11-10
2024-04-23
http://instance.metastore.ingenta.com/content/journal4062
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error