1900

A Green Hydrogen Energy System: Optimal Control Strategies for Integrated Hydrogen Storage and Power Generation with Wind Energy

Abstract

The intermittent nature of renewable energy resources such as wind and solar causes the energy supply to be less predictable leading to possible mismatches in the power network. To this end, hydrogen production and storage can provide a solution by increasing flexibility within the system. Stored hydrogen as compressed gas can either be converted back to electricity or it can be used as feed-stock for industry, heating for built environment, and as fuel for vehicles. This research is the first to examine optimal strategies for operating integrated energy systems consisting of renewable energy production and hydrogen storage with direct gas-based use-cases for hydrogen. Using Markov decision process theory, we construct optimal policies for day-to-day decisions on how much energy to store as hydrogen, or buy from or sell to the electricity market, and on how much hydrogen to sell for use as gas. We pay special emphasis to practical settings, such as contractually binding power purchase agreements, varying electricity prices, different distribution channels, green hydrogen offtake agreements, and hydrogen market price uncertainties. Extensive experiments and analysis are performed in the context of Northern Netherlands where Europe’s first Hydrogen Valley is being formed. Results show that gains in operational revenues of up to 51% are possible by introducing hydrogen storage units and competitive hydrogen market-prices. This amounts to a e126,000 increase in revenues per turbine per year for a 4.5 MW wind turbine. Moreover, our results indicate that hydrogen offtake agreements will be crucial in keeping the energy transition on track.

Funding source: This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 875090, HEAVENN - Hydrogen Energy Applications in Valley Environments for Northern Netherlands. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research.
Related subjects: Applications & Pathways
Countries: Netherlands
Loading

Article metrics loading...

/content/journal4247
2022-07-20
2023-01-27
http://instance.metastore.ingenta.com/content/journal4247
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error