Skip to content
1900

A Rational Approach to the Ecological Transition in the Cruise Market: Technologies and Design Compromises for the Fuel Switch

Abstract

Supporting policies to achieve a green revolution and ecological transition is a global trend. Although the maritime transport of goods and people can rightly be counted among the least polluting sectors, much can be done to further reduce its environmental footprint. Moreover, to boost the ecological transition of vessels, a whole series of international regulations and national laws have been promulgated. Among these, the most impactful on both design and operational management of ships concern the containment of air-polluting emissions in terms of GHG, NOx, SOx and PM. To address this challenge, it might seem that many technologies already successfully used in other transport sectors could be applied. However, the peculiar characteristics of ships make this statement not entirely true. In fact, technological solutions recently adopted, for example, in the automotive sector must deal with the large size of vessels and the consequent large amount of energy necessary for their operation. In this paper, with reference to the case study of a medium/large-sized passenger cruise ship, the use of different fuels (LNG, ammonia, hydrogen) and technologies (internal combustion engines, fuel cells) for propulsion and energy generation on board will be compared. By imposing the design constraint of not modifying the payload and the speed of the ship, the criticalities linked to the use of one fuel rather than another will be highlighted. The current limits of application of some fuels will be made evident, with reference to the state of maturity of the relevant technologies. Furthermore, the operational consequences in terms of autonomy reduction will be presented. The obtained results underline the necessity for shipowners and shipbuilders to reflect on the compromises required by the challenges of the ecological transition, which will force them to choose between reducing payload or reducing performance.

Related subjects: Applications & Pathways
Countries: Italy
Loading

Article metrics loading...

/content/journal4275
2023-01-02
2024-03-28
http://instance.metastore.ingenta.com/content/journal4275
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error