Skip to content

Progress and Challenges in Multi-stack Fuel Cell System for High Power Applications: Architecture and Energy Management


With the development of fuel cells, multi-stack fuel cell system (MFCS) for high power application has shown tremendous development potential owing to their obvious advantages including high efficiency, durability, reliability, and pollution-free. Accordingly, the state-of-the-art of MFCS is summarized and analyzed to advance its research. Firstly, the MFCS applications are presented in high-power scenarios, especially in transportation applications. Then, to further investigate the MFCS, MFCS including hydrogen and air subsystem, thermal and water subsystem, multi-stack architecture, and prognostics and health monitoring are reviewed. It is noted that prognostics and health monitoring are investigated rarely in MFCS compared with previous research. In addition, the efficiency and durability of MFCS are not only related to the application field and design principle but also the energy management strategy (EMS). The reason is that the EMS is crucial for lifespan, cost, and efficiency in the multi-stack fuel cell system. Finally, the challenge and development potential of MFCS is proposed to provide insights and guidelines for future research.

Funding source: This paper is supported in part by funding from State Key Laboratory of Mechanical transmission in Chongqing University (No.: SKLMT-ZZKT-2022R02, No.: 2022CDJDX-004 and No.: SKLMTZZKT-2022M085), Chongqing Postdoctoral Research Project (Special Grant:2021XM3107) and the key technological research funding of Sichuan Province (2021YFG0071).
Related subjects: Applications & Pathways

Article metrics loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error