Skip to content
1900

Performance Evaluation of a Hydrogen-fired Combined Cycle with Water Recovery

Abstract

Hydrogen can alleviate the increasing environmental pollution and has good development prospects in power generation due to its high calorific value and low environmental impact. The previously designed hydrogen-fired combined cycle ignored water recycling, which led to an inefficient application of hydrogen and the wastage of water. This paper proposes the concept of a hydrogen-fired combined cycle with water recovery to reuse the condensed water as an industrial heat supply. It was applied to an F-class combined cycle power plant. The results demonstrate that the efficiency of hydrogen-fired combined cycles with and without water recovery increased by 1.92% and 1.35%, respectively, compared to that of the natural-gas-fired combined cycle under full working conditions. In addition, an economic comparison of the three cycles was conducted. The levelized cost of energy of the hydrogen-fired combined cycle with water recovery will be 52.22% lower than that of the natural-gas-fired combined cycle in 2050. This comparative study suggested that water recovery supplementation could improve the gas turbine efficiency. The proposed hydrogen-fired combined cycle with water recovery would provide both environmental and economic benefits.

Funding source: This work was supported by the National Natural Science Foundation of China [grant number 51876116], the National Fundamental Research Project [grant numbers JCKY2017208A001, JCKY2019204B009, JCKY2020208B036, JCKY2021209B016, MKF20200020], and the Industry-University-Research Cooperation Project of AECC [grant number HFZL2019CXY028].
Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal4509
2023-03-04
2024-09-16
/content/journal4509
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error