Skip to content
1900

Evaluation of Hydrogen Blend Stability in Low-Pressure Gas Distribution

Abstract

Natural gas distribution companies are developing ambitious plans to decarbonize the services that they provide in an affordable manner and are accelerating plans for the strategic integration of renewable natural gas and the blending of green hydrogen produced by electrolysis, powered with renewable electricity being developed from large new commitments by states such as New York and Massachusetts. The demonstration and deployment of hydrogen blending have been proposed broadly at 20% of hydrogen by volume. The safe distribution of hydrogen blends in existing networks requires hydrogen blends to exhibit similar behavior as current supplies, which are also mixtures of several hydrocarbons and inert gases. There has been limited research on the properties of blended hydrogen in low-pressure natural gas distribution systems. Current natural gas mixtures are known to be sufficiently stable in terms of a lack of chemical reaction between constituents and to remain homogeneous through compression and distribution. Homogeneous mixtures are required, both to ensure safe operation of customer-owned equipment and for safety operations, such as leak detection. To evaluate the stability of mixtures of hydrogen and natural gas, National Grid experimentally tested a simulated distribution natural gas pipeline with blends containing hydrogen at up to 50% by volume. The pipeline was outfitted with ports to extract samples from the top and bottom of the pipe at intervals of 20 feet. Samples were analyzed for composition, and the effectiveness of odorant was also evaluated. The new results conclusively demonstrate that hydrogen gas mixtures do not significantly separate or react under typical distribution pipeline conditions and gas velocity profiles. In addition, the odorant retained its integrity in the blended gas during the experiments and demonstrated that it remains an effective method of leak detection.

Funding source: This research was funded internally by National Grid.
Related subjects: Hydrogen Blending
Countries: United States
Loading

Article metrics loading...

/content/journal4622
2023-04-14
2024-05-01
/content/journal4622
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error