Skip to content

Experimental Evaluation of Dynamic Operating Concepts for Alkaline Water Electrolyzers Powered by Renewable Energy


Synthetic current density profiles with wind and photovoltaic power characteristics were calculated by autoregressive-moving-average (ARMA) models for the experimental evaluation of dynamic operating concepts for alkaline water electrolyzers powered by renewable energy. The selected operating concepts included switching between mixed and split electrolyte cycles and adapting the liquid electrolyte volume flow rate depending on the current density. All experiments were carried out at a pressure of 7 bar, a temperature of 60 °C and with an aqueous potassium hydroxide solution with 32 wt.% KOH as the electrolyte. The dynamic operating concepts were compared to stationary experiments with mixed electrolyte cycles, and the experimental evaluation showed that the selected operating concepts were able to reduce the gas impurity compared to the reference operating conditions without a noticeable increase of the cell potential. Therefore, the overall system efficiency and process safety could be enhanced by this approach.

Funding source: This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers: 290019031, 391348959.
Related subjects: Production & Supply Chain
Countries: Germany

Article metrics loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error