Skip to content
1900

Study on the Effects of the Hydrogen Substitution Rate on the Performance of a Hydrogen–Diesel Dual-Fuel Engine under Different Loads

Abstract

Due to having zero carbon emissions and renewable advantages, hydrogen has great prospects as a renewable form of alternate energy. Engine load and hydrogen substitution rate have a considerable influence on a hydrogen–diesel dual-fuel engine’s efficiency. This experiment’s objective is to study the influence of hydrogen substitution rate on engine combustion and emission under different loads and to study the impact of exhaust gas recirculation (EGR) technology or main injection timing on the engine’s capability under high load and high hydrogen substitution rate. The range of the maximum hydrogen substitution rate was determined under different loads (30%~90%) at 1800 rpm and, then, the effects of the EGR rate (0%~15%) and main injection timing (−8 ◦CA ATDC~0 ◦CA ATDC) on the engine performance under 90% high load were studied. The research results show that the larger the load, the smaller the maximum hydrogen substitution rate that can be added to the dual-fuel engine. Under each load, with the increase of the hydrogen substitution rate, the cylinder pressure and the peak heat release rate (HRR) increase, the equivalent brake-specific fuel consumption (BSFCequ) decreases, the thermal efficiency increases, the maximum thermal efficiency is 43.1%, the carbon dioxide (CO2 ) emission is effectively reduced by 35.2%, and the nitrogen oxide (NOx) emission decreases at medium and low loads, and the maximum increase rate is 20.1% at 90% load. Under high load, with the increase of EGR rate or the delay of main injection timing, the problem of NOx emission increases after hydrogen doping can be effectively solved. As the EGR rate rises from 0% to 15%, the maximum reduction of NOx is 63.1% and, with the delay of main injection timing from −8 ◦CA ATDC to 0 ◦CA ATDC, the maximum reduction of NOx is 44.5%.

Funding source: This research was funded by the National Natural Science Foundation of China under grant 52066008, a study on the effect of hydrogen substitution rate on the performance of a hydrogen–diesel dual-fuel engine under different loads under grant 2021J0057.
Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal4956
2023-08-14
2024-07-27
/content/journal4956
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error