Skip to content
1900

A Control Strategy Study of a Renewable CCHP Energy System Integrated Hydrogen Production Unit - A Case Study of an Industrial Park in Jiangsu Province

Abstract

This paper describes a renewable energy system incorporating a hydrogen production unit to address the imbalance between energy supply and demand. The system utilizes renewable energy and hydrogen production energy to release energy to fill the power gap during peak demand power supply for demand peaking and valley filling. The system is optimized by analyzing marine predator behavioral logic and optimizing the system for maximum operational efficiency and best economic value. The results of the study show that after the optimized scheduling of the hydrogen production coupled renewable energy integrated energy system using the improved marine predator optimization algorithm, the energy distribution of the whole energy system is good, with the primary energy saving rate maintained at 24.75%, the CO2 emission reduction rate maintained at 42.32%, and the cost saving rate maintained at 0.78%. In addition, this paper uses the Adaboost-BP prediction model to predictively analyze the system. The results show that as the price of natural gas increases, the advantages of the combined hydrogen production renewable integrated energy system proposed in this paper become more obvious, and the cumulative cost over three years is better than other related systems. These research results provide an important reference for the application and development of the system.

Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal4990
2023-08-10
2024-07-27
/content/journal4990
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error