Skip to content

A Comparison of Steam Reforming Concepts in Solid Oxide Fuel Cell Systems


Various concepts have been proposed to use hydrocarbon fuels in solid oxide fuel cell (SOFC) systems. A combination of either allothermal or adiabatic pre-reforming and water recirculation (WR) or anode off-gas recirculation (AOGR) is commonly used to convert the fuel into a hydrogen rich mixture before it is electrochemically oxidised in the SOFC. However, it is unclear how these reforming concepts affect the electrochemistry and temperature gradients in the SOFC stack. In this study, four reforming concepts based on either allothermal or adiabatic pre-reforming and either WR or AOGR are modelled on both stack and system level. The electrochemistry and temperature gradients in the stack are simulated with a one-dimensional SOFC model, and the results are used to calculate the corresponding system efficiencies. The highest system efficiencies are obtained with allothermal pre-reforming and WR. Adiabatic pre-reforming and AOGR result in a higher degree of internal reforming, which reduces the cell voltage compared to allothermal pre-reforming and WR. Although this lowers the stack efficiency, higher degrees of internal reforming reduce the power consumption by the cathode air blower as well, leading to higher system efficiencies in some cases. This illustrates that both stack and system operation need to be considered to design an efficient SOFC system and predict potentially deteriorating temperature gradients in the stack.

Countries: Netherlands

Article metrics loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error