Skip to content
1900

Toward Green Steel: Modelling and Environmental Economic Analysis of Iron Direct Reduction with Different Reducing Gases

Abstract

The objective of the paper is to simulate the whole steelmaking process cycle based on Direct Reduced Iron and Electric Arc Furnace technologies, by modeling for the first time the reduction furnace based on kinetic approach, to be used as a basis for the environmental and techno-economic plant analysis by adopting different reducing gases. In addition, the impact of carbon capture section is discussed. A complete profitability analysis has been conducted for the first time, adopting a Monte Carlo simulation approach.
In detail, the use of syngas from methane reforming, syngas and hydrogen from gasification of municipal solid waste, and green hydrogen from water electrolysis are analyzed. The results show that the Direct Reduced Iron process with methane can reduce CO2 emissions by more than half compared to the blast furnace based-cycle, and with the adoption of carbon capture, greenhouse gas emissions can be reduced by an additional 40%. The use of carbon capture by amine scrubbing has a limited economic disadvantage compared to the scenario without it, becoming profitable once carbon tax is included in the analysis. However, it is with the use of green hydrogen from electrolyzer that greenhouse gas emissions can be cut down almost completely. To have an environmental benefit compared with the methane-based Direct Reduced Iron process, the green hydrogen plant must operate for at least 5136 h per year (64.2% of the plant's annual operating hours) on renewable energy.
In addition, the use of syngas and separated hydrogen from municipal solid waste gasification is evaluated, demonstrating its possible use with no negative effects on the quality of produced steel. The results show that hydrogen use from waste gasification is more economic with respect to green hydrogen from electrolysis, but from the environmental viewpoint the latter results the best alternative. Comparing the use of hydrogen and syngas from waste gasification, it can be stated that the use of the former reducing gas results preferable, from both the economic and environmental viewpoint.

Related subjects: Applications & Pathways
Countries: Italy
Loading

Article metrics loading...

/content/journal5104
2023-09-27
2024-05-16
/content/journal5104
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error