Skip to content
1900

Operational Optimization of Regional Integrated Energy Systems with Heat Pumps and Hydrogen Renewable Energy under Integrated Demand Response

Abstract

A regional integrated energy system (RIES), synergizing multiple energy forms, is pivotal for enhancing renewable energy use and mitigating the greenhouse effect. Considering that the equipment of the current regional comprehensive energy system is relatively simple, there is a coupling relationship linking power generation, refrigeration, and heating in the cogeneration system, which is complex and cannot directly meet various load demands. This article proposes a RIES optimization model for bottom-source heat pumps and hydrogen storage systems in the context of comprehensive demand response. First, P2G electric hydrogen production technology was introduced into RIES to give full play to the high efficiency advantages of hydrogen energy storage system, and the adjustable thermoelectric ratio of the HFC was considered. The HFC could adjust its own thermoelectric ratio according to the system load and unit output. Second, through the groundsource heat pump’s cleaning efficiency function, further separation and cooling could be achieved. The heat and electrical output of RIES improved the operating efficiency of the system. Thirdly, a comprehensive demand response model for heating, cooling, and electricity was established to enable users to reasonably adjust their own energy use strategies to promote the rational distribution of energy in the system. The model integrates power-to-gas (P2G) technology, leveraging the tunable thermoelectric ratio of a hydrogen fuel cell (HFC) to optimize the generation of electricity and heat while maximizing the efficiency of the hydrogen storage system. Empirical analysis substantiated the proposed RIES model’s effectiveness and economic benefits when integrating ground-source HP and electric hydrogen production with IDR. Compared with the original model, the daily operating cost of the proposed model was reduced by RMB 1884.16.

Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal5466
2024-01-31
2024-05-17
/content/journal5466
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error