Enhancing Diesel Engine Performance Through Hydrogen Addition
Abstract
This study evaluates the potential of hydrogen as a clean additive to conventional diesel fuel. Experiments were carried out on a single-cylinder, air-cooled diesel engine under half- and full-load conditions, across engine speeds ranging from 1000 to 3000 rpm. Hydrogen, produced on site via a proton exchange membrane electrolyser, was supplied to the engine at a constant flow rate of 0.5 L/min. Compared to pure diesel, the hydrogen–diesel blend reduced specific fuel consumption by 10% and increased brake thermal efficiency by 10% at full load. Emissions of carbon monoxide and carbon dioxide decreased by 13% and 17%, respectively, at half load. Additionally, nitrogen oxide emissions dropped by 17%. These results highlight the potential of hydrogen to improve combustion efficiency while significantly mitigating emissions, offering a viable transitional solution for cleaner power generation using existing diesel infrastructure.