Hydrogen-Powered Aviation: Insights from a Cross-Sectional Scientometric and Thematic Analysis of Patent Claims
Abstract
Hydrogen-powered aviation is gaining momentum as a sustainable alternative to fossil-fueled flight, yet the field faces complex technological and operational challenges. To better understand commercial innovation pathways, this study analyzes the claims sections of 166 hydrogen aviation patents issued between 2018 and 2024. Unlike prior studies that focused on patent titles or abstracts, this approach reveals the protected technical content driving commercialization. The study classifies innovations into seven domains: fuel storage, fuel delivery, fuel management, turbine enhancement, fuel cell integration, hybrid propulsion, and safety enhancement. Thematic word clouds and term co-occurrence networks based on natural language processing techniques validate these classifications and highlight core technical themes. Scientometric analyses uncover rapid patent growth, rising international participation, and strong engagement from both established aerospace firms and young companies. The findings provide stakeholders with a structured view of the innovation landscape, helping to identify technological gaps, emerging trends, and areas for strategic investment and policymaking. This claims-based method offers a scalable framework to track progress in hydrogen aviation and is adaptable to other emerging technologies.