Optimization Control of Flexible Power Supply System Applied to Offshore Wind–Solar Coupled Hydrogen Production
Abstract
The inherent randomness and intermittency of offshore renewable energy sources, such as wind and solar power, pose significant challenges to the stable and secure operation of the power grid. These fluctuations directly affect the performance of grid-connected systems, particularly in terms of harmonic distortion and load response. This paper addresses these challenges by proposing a novel harmonic control strategy and load response optimization approach. An integrated three-winding transformer filter is designed to mitigate high-frequency harmonics, and a control strategy based on converter-side current feedback is implemented to enhance system stability. Furthermore, a hybrid PI-VPI control scheme, combined with feedback filtering, is employed to improve the system’s transient recovery capability under fluctuating load and generation conditions. Experimental results demonstrate that the proposed control algorithm, based on a transformer-oriented model, effectively suppresses low-order harmonic currents. In addition, the system exhibits strong anti-interference performance during sudden voltage and power variations, providing a reliable foundation for the modulation and optimization of offshore wind–solar coupled hydrogen production power supply systems.