Distributionally Robust Optimal Scheduling for Integrated Energy System Based on Dynamic Hydrogen Blending Strategy
Abstract
To mitigate challenges arising from renewable energy volatility and multi-energy load uncertainty, this paper introduces a dynamic hydrogen blending (DHB) strategy for an integrated energy system. The strategy is categorized into Continuous Hydrogen Blending (CHB) and Time-phased Hydrogen Blending (THB), based on the temporal variations in the hydrogen blending ratio. To evaluate the regulatory effect of DHB on uncertainty, a datadriven distributionally robust optimization method is employed in the day-ahead stage to manage system uncertainties. Subsequently, a hierarchical model predictive control framework is designed for the intraday stage to track the day-ahead robust scheduling outcomes. Experimental results indicate that the optimized CHB ratio exhibits step characteristics, closely resembling the THB configuration. In terms of cost-effectiveness, CHB reduces the day-ahead scheduling cost by 0.87% compared to traditional fixed hydrogen blending schemes. THB effectively simplifies model complexity while maintaining a scheduling performance comparable to CHB. Regarding tracking performance, intraday dynamic hydrogen blending further reduces upper- and lower-layer tracking errors by 4.25% and 2.37%, respectively. Furthermore, THB demonstrates its advantage in short-term energy regulation, effectively reducing tracking errors propagated from the upper layer MPC to the lower layer, resulting in a 2.43% reduction in the lower-layer model’s tracking errors.