Skip to content
1900

State-Aware Energy Management Strategy for Marine Multi-Stack Hybrid Energy Storage Systems Considering Fuel Cell Health

Abstract

To address the limitations of conventional single-stack fuel cell hybrid systems using equivalent hydrogen consumption strategies, this study proposes a multi-stack energy management strategy incorporating fuel cell health degradation. Leveraging a fuel cell efficiency decay model and lithium-ion battery cycle life assessment, power distribution is reformulated as an equivalent hydrogen consumption optimization problem with stack degradation constraints. A hybrid Genetic Algorithm–Particle Swarm Optimization (GAPSO) approach achieves global optimization. The experimental results demonstrate that compared with the Frequency Decoupling (FD) method, the GA-PSO strategy reduces hydrogen consumption by 7.03 g and operational costs by 4.78%; compared with the traditional Particle Swarm Optimization (PSO) algorithm, it reduces hydrogen consumption by 3.61 g per operational cycle and decreases operational costs by 2.66%. This strategy ensures stable operation of the marine power system while providing an economically viable solution for hybrid-powered vessels.

Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal7380
2025-07-22
2025-12-05
/content/journal7380
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test