State-Aware Energy Management Strategy for Marine Multi-Stack Hybrid Energy Storage Systems Considering Fuel Cell Health
Abstract
To address the limitations of conventional single-stack fuel cell hybrid systems using equivalent hydrogen consumption strategies, this study proposes a multi-stack energy management strategy incorporating fuel cell health degradation. Leveraging a fuel cell efficiency decay model and lithium-ion battery cycle life assessment, power distribution is reformulated as an equivalent hydrogen consumption optimization problem with stack degradation constraints. A hybrid Genetic Algorithm–Particle Swarm Optimization (GAPSO) approach achieves global optimization. The experimental results demonstrate that compared with the Frequency Decoupling (FD) method, the GA-PSO strategy reduces hydrogen consumption by 7.03 g and operational costs by 4.78%; compared with the traditional Particle Swarm Optimization (PSO) algorithm, it reduces hydrogen consumption by 3.61 g per operational cycle and decreases operational costs by 2.66%. This strategy ensures stable operation of the marine power system while providing an economically viable solution for hybrid-powered vessels.